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Preface

The purpose of this book is to provide an in-depth information on fundamentals of Engineering
Physics to the student community to improve their general understanding on the subject and
designed as a textbook for the beginners in al branches of Engineering according to the recent
gyllabus of Swami Vivekananda University, Kolkata. The book has been divided into four
Chapters.

The first Chapter is Electromagnetism, which contains Maxwell’s Equation, Electrostatics,
Electrostatics potential, Field lines, Electrostatics energy, Electric Dipoles, Davisson and Germer
Experiment, Matter waves and their Characteristic properties, and Expression for de-Broglie
wavelength using group velocity. The second Chapter ison Dielectric & Magnetic Properties of
Materias, which includes Dielectric constant and polarization of dielectric materials. Types of
polarization. Equation for interna fields in liquids and solids, Classius — Mussoti equation, Ferro
and Piezo — electricity, Frequency dependence of dielectric constant, and Soft and Hard magnetic
materials. The third Chapter is Quantum Mechanics, which involves Heisenberg’s uncertainty
principle and its physical significance, Wave function, Time independent Schrodinger wave
equation, Application of Schrédinger wave equation — Energy eigen values for afree particle, and
Energy eigen values of a particle in a potential well of infinite depth. The fourth Chapter is
oscillations and vibrations, which involves oscillatory motion, Harmonic and non-harmonic
function, SHM and their examples, Damped and forced vibration, Amplitude and velocity
resonance, sharpness of resonance, steady state forced vibrations and rate of dissipation of energy

dueto resistive frictional force.

Every attempt has been made to make thisbook error free and useful for the students. Each Chapter
begins with objective and ends with unit questions, assignment problems.

Any constructive suggestion and criticism regarding the improvement of this book will be
acknowledged.

(Dr. Kazi Hasibur Rahman) Date: 03-07-2024
Assistant Professor,
Swami Vivekananda University, Kolkata, West Bengal, India
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CHAPTER 1:

ELECTROMAGNETISM
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Chapter 1
1. 1. Introduction
There are, to the best of our knowledge, four forces at play in the Universe. At the very largest scales — those of
planets or stars or galaxies — the force of gravity dominates. At the very smallest distances, the two nuclear
forces hold sway. For everything in between, it is force of electromagnetism that rules.
At the atomic scale, electromagnetism (admittedly in conjunction with some basic quantum effects) governs the
interactions between atoms and molecules. It isthe force that underlies the periodic table of elements, giving rise
to al of chemistry and, through this, much of biology. It is the force which binds atoms together into solids and
liquids. And it is the force which is responsible for the incredible range of properties that different materials
exhibit.
At the macroscopic scale, el ectromagnetism manifests itself in the familiar phenomena that give the force its
name. In the case of electricity, this means everything from rubbing a balloon on your head and sticking it on the
wall, through to the fact that you can plug any appliance into the wall and be pretty confident that it will work.
For magnetism, this means everything from the shopping list stuck to your fridge door, through to trainsin Japan
which levitate above the rail. Harnessing these powers through the invention of the electric dynamo and motor
has transformed the planet and our liveson it.
As if this wasn’t enough, there is much more to the force of electromagnetism for it is, quiteliterally, responsible
for everything you’ve ever seen. It is the force that gives rise to light itself.
Rather remarkably, a full description of the force of electromagnetism is contained in four smple and elegant
equations. These are known as the Maxwell equations. There are few places in physics, or indeed in any other
subject, where such a richly diverse set of phenomena flows from so little. The purpose of this course is to
introduce the Maxwell equations and to extract some of the many stories they contain. However, thereis aso a
second theme that runs through this course. The force of electromagnetism turns out to be a blueprint for all the
other forces. There are various mathematical symmetries and structures lurking within the Maxwell equations,
structures which Nature then repeats in other contexts. Understanding the mathematical beauty of the equations
will allow us to see some of the principles that underly the laws of physics, laying the groundwork for future
study of the other forces.

1.1.1 Chargeand Current

Each particle in the Universe carries with it a number of properties. These determine how the particle interacts
with each of the four forces. For the force of gravity, this property is mass. For the force of electromagnetism, the
property is called electric charge.
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For the purposes of this course, we can think of electric charge as areal number, g € R. Importantly, charge can
be positive or negative. It can also be zero, in which case the particle is unaffected by the force of
el ectromagnetism.
The Sl unit of charge is the Coulomb, denoted by C. It is, like all SI units, a parochial measure, convenient for
human activity rather than informed by the underlying laws of the physics. (We’ll learn more about how the
Coulomb is defined in Section 3.5). At afundamental level, Nature provides us with a better unit of charge. This
followsfrom thefact that charge is quantised: the charge of any particleisan integer multiple of the charge carried
by the electron which we denoted as —e, with

e=1.60217657 x 10 1°C
A much more natural unit would be to simply count charge as g = newith n € Z. Then electrons have charge —1
while protons have charge +1 and neutrons have charge 0. Nonetheless, in this course, we will bow to convention
and stick with SI units. (An aside: the charge of quarksisactually q =—e/3 and q = 2€/3. This doesn’t change the
spirit of the above discussion since we could just change the basic unit. But, apart from in extreme circumstances,
guarks are confined inside protons and neutrons so we rarely have to worry about this).
One of the key goals of this courseisto move beyond the dynamics of point particles
and onto the dynamics of continuous objects known as fields. To aid in this, it’s useful
to consider the charge density,

p(X, t)

defined as charge per unit volume. The total charge Q in agivenregion V issimply,

— ' 3
Q —fvd xp(x,t)

In most situations, we will consider smooth charge densities, which can be thought of as arising from averaging
over many point-like particles. But, on occasion, we will return to theidea of asingle particle of charge g, moving
on some trajectory r(t), by writing p = qé(x — r(t)) where the delta-function ensures that al the charge sits at a
point.

More generally, we will need to describe the movement of charge from one place to another. Thisis captured by

aquantity known as the current density J(x, t), defined as follows: for every surface S, the integral

|'I= /I.ln'".;

counts the charge per unit time passing through S. (Here dS is the unit normal to S). The quantity | is called the

current. In this sense, the current density is the current-per-unit-area. The above is arather indirect definition of
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the current density. To get amore intuitive picture, consider acontinuous charge distribution in which the velocity

of asmall volume, at point X, is given by v(x, t). Then, neglecting relativistic effects, the current density is

1I = lr-"'.'

In particular, if asingle particle is moving with velocity v = “r(t), the current density will be J = qva3(x — r(t)).

Thisisillustrated in the figure, where the underlying charged particles are shown as red balls, moving through
the blue surface S.

As a simple example, consider electrons moving along a wire. We model the wire as a long cylinder of cross-
sectional area A as shown below. The electrons move with velocity v, paralel to the axis of the wire. (In redlity,
the electrons will have some distribution of speeds; wetake v to be their average velocity). If there are n electrons
per unit volume, each with charge q, then the charge density is p = nq and the current density is J = nqv. The
current itself is

I =IA
Throughout this course, the current density J plays a much more prominent role
than the current I. For this reason, we will often refer to J simply as the current although we’ll be more careful
with the terminology when there is any possibility for confusion.
1.1.2. TheConservation Law
The most important property of electric charge is that it’s conserved. This, of course, means that the total charge

in a system can’t change. But it means much more than that because electric charge is conserved locally. An
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electric charge can’t just vanish from one part of the Universe and turn up somewhere else. It can only leave
one point in space by moving to a neighbouring point.

The property of local conservation means that p can change in time only if there is a compensating current
flowing into or out of that region. We express this in the continuity equation,

|..|'.'i

— 4+ V. I=1

i .|'|I
Thisis an important equation. It arises in any situation where there is some quantity that is locally conserved.
To see why the continuity equation captures the right physics, it’s best to consider the change in the total charge

Q contained in someregion V.

1) T 3. : y
i, o / B P / B V. I = — / 1.8
i i et Jv I

From our previous discussion,
f J.ds
N

is the total current flowing out through the boundary S of the region V.(It is the total charge flowing out, rather
than in, because dS is the outward normal to the region V ). The minus sign is there to ensure that if the net flow
of current is outwards, then the total charge decreases. If there is no current flowing out of the region, then dQ/dt
= 0. This is the statement of (global) conservation of charge. In many applications we will take V to be all of
space, R3, with both charges and currents localised in some compact region. This ensures that the total charge

remains constant.

1.1.3. Forcesand Fields

Any particle that carries electric charge experiences the force of electromagnetism. But the force does not act
directly between particles. Instead, Nature chose to introduce intermediaries. These are fields.

In physics, a “field” is a dynamical quantity which takes avalue at every point in space and time. To describe the
force of electromagnetism, we need to introduce two fields, each of which is a three-dimensional vector. They
are called the e ectric field E and the magnetic field B,

Eix. 1) and Bix.f

When we talk about a “force” in modern physics, we really mean an intricate interplay between particles and

fields. There are two aspectsto this. First, the charged particles create both electric and magnetic fields. Second,
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the electric and magnetic fields guide the charged particles, telling them how to move. This motion, in turn,
changes the fields that the particles create. We’re left with a beautiful dance with the particles and fields as two
partners, each dictating the moves of the other. This dance between particles and fiel ds provides a paradigm which
all other forcesin Nature follow. It feels like there should be a deep reason that Nature chose to introduce fields
associated to all theforces. And, indeed, this approach does provide one overriding advantage: all interactionsare
local. Any object — whether particle or field —affects things only in itsimmediate neighbourhood. Thisinfluence
can then propagate through the field to reach another point in space, but it does not do so instantaneousdly. It takes
time for a particle in one part of space to influence a particle elsewhere. This lack of instantaneous interaction
allows us to introduce forces which are compatible with the theory of special relativity.

The purpose of this course is to provide a mathematical description of the interplay between particles and
electromagnetic fields. In fact, you’ve already met one side of this dance: the position r(t) of a particle of charge
g isdictated by the electric and magnetic fields through the Lorentz force law,

F =g(E + ¢ x B)

The motion of the particle can then be determined through Newton’s equation F = mf.

We explored various solutions to this in the Dynamics and Relativity course. Roughly speaking, an electric field
accelerates a particle in the direction E, while a magnetic field causes a particle to move in circles in the plane
perpendicular to B. We can also write the Lorentz force law in terms of the charge distribution p(x, t) and the
current density J(x, t). Now we talk in terms of the force density f (x, t), which is the force acting on a small
volume at point x. Now the Lorentz force law reads

f=pB+JxB

1.1.4. The Maxwell Equations

In this course, most of our attention will focus on the other side of the dance: the way in which electric and
magnetic fields are created by charged particles. Thisis described by a set of four equations, known collectively
asthe Maxwell equations. They are:

6|Page




i
i) ¥

!:- 5 T! FHE T

= |"||'I

The equations involve two constants. The first is the electric constant (known also, in dlightly old-fashioned
terminology, as the permittivity of free space),

: 4% _ ¥ — Ly
£ == H'"r""l = |_|| = I :I]I'll.'ll I_I-\.'_I" 5

It can be thought of as characterising the strength of the electric interactions. The other is the magnetic constant

(or permeability of free space),

g = dr x 1077 m Ky C™*
= 1.25 % 107° m Kg O 2

The presence of 4z in this formula isn’t telling us anything deep about Nature. It’s more a reflection of the
definition of the Coulomb as the unit of charge. Nonetheless, this can be thought of as characterizing the strength
of magnetic interactions (in units of Coulombs).
Rather than trying to understand all the equations at once, we’ll proceed bit by bit, looking at situations where
only some of the equations are important. By the end of the lectures, we will understand the physics captured by
each of these equations and how they fit together.
However, equally importantly, we will also explore the mathematical structure of the Maxwell equations. At first
glance, they look just like four random equations from vector calculus. Yet this couldn’t be further from the truth.
The Maxwell equations are specia and, when viewed in the right way, are the essentially unique equations that
can describe the force of electromagnetism. The full story of why these are the unique equations involves both
guantum mechanics and relativity and will only be told in later courses. But we will start that journey here. The
goal isthat by the end of these lectures you will be convinced of the importance of the Maxwell equations on both
experimental and aesthetic grounds.
1.2. Electrostatics:
The electric field produced by stationary source charges is called and electrostatic field. The electric field at a

particular point is a vector whose magnitude is proportiona to the total force acting on a test charge located at
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that point, and whose direction is equal to the direction of the force acting on a positive test charge. The electric

field E , generated by a collection of source charges, is defined as

T

Ll |

where F is the total electric force exerted by the source charges on the test charge Q. It is assumed that the test
charge Q is small and therefore does not change the distribution of the source charges. The total force exerted by

the source charges on the test charge is equal to

o 1 f 0 26 ) 7 &
F=E+F+E+=T"" f'ﬁﬂf:—q"iﬁ e J_ < iﬁ

_"'II =4+

-1 % 'Ii

The electric field generated by the source charges is thus equal to

- F 1 = g ;

T

In this section, we will be interested in electric charges at rest. This means that there exists a frame of reference
in which there are no currents; only stationary charges. Of course, there will be forces between these charges but
we will assume that the charges are pinned in place and cannot move. The question that we want to answer is:
what is the electric field generated by these charges? Since nothing moves, we are looking for time independent
solutions to Maxwell’sequations with J= 0. This meansthat we can consistently set B =0 and we’re left with two
of Maxwell’s equations to solve. They are,

vV-E=L

Y xE=10

1.2.1. A History of Electrostatics

Perhaps the simplest demonstration of the attractive properties of electric charge comes from rubbing a balloon
on your head and sticking it to the wall. This phenomenon was known, at least in spirit, to the ancient Greeks and
is credited to Thales of Miletus around 600 BC. Although, in the absence of any ancient balloons, he had to make
do with polishing pieces of amber and watching it attract small objects. A systematic, scientific approach to
electrostatics starts with William Gilbert, physicist, physician and one-time bursar of St Johns College,
Cambridge. (Rumour has it that he’d rather have been at Oxford.) His most important work, De Magnete,
published in 1600 showed, among other things, that many materials, not just amber, could be eectrified. With
due deference, hereferred to these as “electrics”, derived from the Greek “niektpov” (electron) meaning “amber”.
These are materials that we now call “insulators”. There was slow progress over the next 150 years, much of it
devoted to building machines which could store electricity. A notable breakthrough came from the experiments
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of thelittle-known English scientist Stephen Grey, who wasthefirst to appreciate that the difficulty in electrifying
certain objects is because they are conductors, with any charge quickly flowing through them and away. Grey
spent most of his life as an amateur astronomer, although his amateur status appears to be in large part because
he fell foul of 1saac Newton who barred his entry into more professional scientific circles.

He performed his experiments on conductors in the 1720s, late in life when the lack of any income left him
destitute and pensioned to Chaterhouse (which was, perhaps, the world’s fanciest poorhouse). Upon Newton’s
death, the scientific community clamoured to make amends. Grey was awarded the Royal Society’s first Copley
medal. Then, presumably because they felt guilty, he was also awarded the second. Grey’s experiments were later
reproduced by the French chemist CharlesFran, coisde Cisternay DuFay, who cameto thewonderful conclusion
that all objects can be electrified by rubbing apart from “metals, liquids and animals”. He does not, to my
knowledge, state how much rubbing of animals he tried before giving up. He was also the first to notice that static
electricity can give rise to both attractive and repulsive forces. By the 1750s, there were many experiments on
electricity, but little theory to explain them. Most ideas rested on afluid description of eectricity, but arguments
raged over whether a single fluid or two fluids were responsible. The idea that there were both positive and
negative charges, then thought of as a surplus and deficit of fluid, was introduced independently by the botanist
William Watson and the US founding father Benjamin Franklin. Franklin is arguably the first to suggest that
charge is conserved although his statement wasn’t quite as concise as the continuity equation:

It is now discovered and demonstrated, both here and in Europe, that the Electrical Fire is area Element, or
Species of Matter, not created by the Friction, but collected only Benjamin Franklin, 1747. Still, it’s nice to know
that chargeis conserved both inthe US and in Europe. A quantitative understanding of the theory of electrostatics
came only in the 1760s.

A number of people suggested that the electrostatic force follows an inverse-square law, prominent among them
Joseph Priestly who is better known for the discovery of Oxygen and, of at least equal importance, the invention
of sodawater. In 1769, the Scottish physicist John Robison announced that he had measured the force to fall off
as Ur206. Thiswas before the invention of error bars and he seems to receive little credit. Around the same time,
the English scientist Henry Cavendish, discover of Hydrogen and weigher of the Earth, performed a number of
experiments to demonstrate the inverse-square law but, aswith his many of his other electromagnetic discoveries,
he chose not to publish. It was left to French physicist Charles Augustin de Coulomb to clean up, publishing the
results of his definitive experimentsin 1785 on the force that now carries his hame.

In its final form, Coulomb’s law becomes transmuted into Gauss’ law. For once, this was done by the person after

whom it’s named. Gauss derived this result in 1835, although it wasn’t published until 1867.
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1.2.2. Gauss’ Law
Consider some closed region V c R® of space. We’ll denote the boundary of V by S= 6V . By integrating this
equation,

vV-E=L

|'|:

Since the left-hand side is a total derivative, we can use the divergence theorem to convert this to an integral

o - | [
/ PrVF= / E-dS =— / a T p
J S8 el

The integral of the charge density over V is simply the total charge contained in the region. We’ll call it Q =

over the surface S. We have,

[ d3x p. Meanwhile, theintegral of the electric field over Sis called the flux through S. We learn that the two are
related by,

Thisis Gauss’s law.

= el [k '-.__ "
’ 4 Lo — %
/ / H"‘ B K‘x i
| 1 5
] '8 |
—— @] ey o ® |
M I'._m o ! i .-__ e g f
.\'\\\. .\K\"\-\_\_\. - 4 __.-" =] -~ s .-"'-‘. i
e e et x % /
.-l,-' -
, : / i | : _.-""f
= |
e
The flux through Sand S’ isthe same. The flux through S vanishes.

Notice that it doesn’t matter what shape the surface S takes. Aslong as it surrounds atotal charge Q, the flux
through the surface will always be Q/€0. Thisis shown, for example, in the left-hand figure above. A fancy way
of saying this is that the integral of the flux doesn’t depend on the geometry of the surface, but does depend on
its topology since it must surround the charge Q. The choice of Sis called the Gaussian surface; often there’s a
smart choice that makes a particular problem simple.
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Only charges that lie inside V contribute to the flux. Any charges that lie outside will produce an eectric field
that penetrates through S at some point, giving negative flux, but leaves through the other side of S, depositing
positive flux. Thetotal contribution from these chargesthat lie outside of V is zero, asillustrated in the right-hand
figure above.

1.2.3. The Coulomb Force

Gauss’ law reproduces the more familiar Coulomb force law that we all know and love. To do this, take a
spherically symmetric charge distribution, centered at the origin, contained within some radius R. This will be
our model for a particle. We won’t need to make any assumption about the nature of the distribution other than
its symmetry and the fact that the total chargeis Q.

We want to know the electric field at some radius r >R. We take our Gaussian surface S to be a sphere of radius

X

I as shown in the figure. Gauss’ law states,

i} 4
B dl = —
== Sy

<

5

At this point we make use of the spherical symmetry of the problem. Thistells usthat the electric field must point
radialy outwards: E(x) = E(r)"r. And, sincethe integral isonly over the angular coordinates of the sphere, we can

pull the function E(r) outside. We have,

. i . 4 ‘2
[E.-—."F'i —" T [1'-u.l'H — et ==
s o5 Efi

where the factor of 4nr? has arisen simply because it’s the area of the Gaussian sphere. We learn that the electric
field outside a spherically symmetric distribution of charge Q is

L}
E(x)=——t
o Ee

That’s nice. This is the familiar result that we’ve seen before. The Lorentz force law then tells us that a test charge
g moving in theregion r > R experiences aforce,

N |".|.'||
F = —-

— -I.I
|.-".\,|l £
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This, of course, is the Coulomb force between two static charged particles. Notice that, as promised, 1/eg
characterises the strength of the force. If the two charges have the same sign, so that Qq > 0, theforceisrepulsive,
pushing the test charge away from the origin. If the charges have opposite signs, Qq < O, the force is attractive,
pointing towards the origin.

1.2.4. A Uniform Sphere

The electric field outside a spherically symmetric charge distribution is always given by equation below. What
about inside? This depends on the distribution in question. The simplest is a sphere of radius R with uniform
charge distribution p. The total chargeis,

Let’s pick our Gaussian surface to be a sphere, centered at the origin, of radius r < R. The charge contained

within this sphere is 4npr®/3 = Qr¥/R3, so Gauss’ law gives,

S

Again, using the symmetry argument we can write E(r) = E(r)"r and compute,

' - “ ™
] E.dS = E(r) / b8 = B At =

r||-IIIJ'5

Thistells usthat the electric field grows linearly inside the sphere. At the surface of the sphere, r = R, the electric

field is continuous but the derivative, dE/dr, isnot. Thisis shown in the graph below,
}

1.2.5. LineCharges
Consider, next, a charge smeared out along a line which we’ll take to be the z-axis. We’ll take uniform charge
density n per unit length. (If you like you could consider a solid cylinder with uniform charge density and then

send the radius to zero).
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We want to know the electric field due to this line of charge. Our set-up now has cylindrical symmetry. We take

the Gaussian surface to be acylinder of length L and radiusr. We have,

Again, by symmetry, the electric field pointsin theradial direction, away from the line. We’ll denote this vector
in cylindrical polar coordinates as “r so that E = E(r)"r. The symmetry means that the two end caps of the Gaussian
surface don’t contribute to the integral because their normal points in the "z direction and "z = “r=0. We’re left

only with a contribution from the curved side of the cylinder,

[E -dS = E(r)2mrLl = L

So that the electric field is,

[
E:r':l == - I

2Tegr

Note that, while the electric field for a point charge drops off as 1/r? (with r the radial distance), the electric field
for aline charge drops off more slowly as 1/r. (Of course, the radial distance r means slightly different thingsin
the two cases: it isr =sqrt(x2+ y?+ z2) for the point particle, but isr = sgrt(x? + y?) for the line).

1.2.6. A Spherical Shell

Let’s give one last example that involves surface charge and the associated discontinuity of the electric field.

We’ll consider a spherical shell of radius R, centered at the origin, with uniform surface charge density o.
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Thetotal chargeis,
= i R

We already know that outside the shell, r > R, the electric field takes the standard inverse-square form. What
about inside? Well, since any surfacewithr < R doesn’t surround a charge, Gauss’ law tells us that we necessarily

have E = 0 inside. That means that there is a discontinuity at the surfacer = R,

L/ (T

E-rl, —E-r|_=

| .Ir.-'.'1| I - '_|

1.3. The Electrostatic Potential

For all the examples in the last section, symmetry considerations meant that we only needed to consider Gauss’
law. However, for general charge distributions Gauss’ law is not sufficient. We also need to invoke the second
equation, V x E = 0. In fact, this second equation is easily dispatched since V x E = 0 impliesthat the electric field

can be written as the gradient of some function,
E=-Vd

The scalar ¢ is called the electrostatic potential or scalar potential (or, sometimes, just the potential). To proceed,

we revert to the original differential form of Gauss’ law. This now takes the form of the Poisson equation

= P —] M
Ii';"l:.= P =% Ii||_',-|:: —_—

) =1

In regions of space where the charge density vanishes, we’re left solving the Laplace equation

Vig=1

A few comments:

* The potential ¢ is only defined up to the addition of some constant. This seemingly trivial point is actualy the
beginning of along and deep story in theoretical physics known as gauge invariance. For now, we’ll eliminate
this redundancy by requiring that ¢(r) — 0 asr — oo.
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» We know from our study of Newtonian mechanics that the electrostatic potential is proportional to the potential
energy experienced by atest particle. Specificaly, atest particle of mass m, position r(t) and charge g movingin

a background electric field has conserved energy

B = _;_-J.']‘ B e T
1.3.1. ThePoint Charge
Let’s start by deriving the Coulomb force law yet again. We’ll take a particle of charge Q and place it at the
origin. This time, however, we’ll assume that the particle really is a point charge. This means that the charge
density takes the form of adelta-function, p(x) = Q53(x). We need to solve the equation,

; 1 T
Vi — % %)
1.3.2. The Point Charge
Let’s start by deriving the Coulomb force law yet again. We’ll take a particle of charge Q and placeit at the origin.
This time, however, we’ll assume that the particle really is a point charge. This means that the charge density

takes the form of a delta-function, p(x) = Q&3(x). We need to solve the equation,
2 .4
V3= — <% x)
=]

Let’s recall how we find this solution. We first look away from the origin, r/= 0, where there’s no funny business
going on with delta-function. Here, we’re looking for the spherically symmetric solution to the Laplace equation.
Thisis

A |

r
for some constant a. To see why this solves the Laplace equation, we need to use the result

Tl' — I
where “r is the unit radial vector in spherical polar coordinates, so x = r'r. Using the chain rule, this means that

V(LUr) = ="r/r> = —x/r3. This gives us,

lI..l I..I

ButV - x=3andwefindthat V2¢ = 0 asrequired.

It remainsto figure out what to do at the origin where the delta-function lives. Thisiswhat determines the overall
normalization o of the solution. At this point, it’s simplest to use the integral form of Gauss’ law to transfer the

problem from the origin to the far flung reaches of space.
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Substituting ¢ = o/r into the above equation, and choosing S to be a sphere of radiusr, tells us that we must have
a = Q/4neo
Taking the gradient of a. = Q/4meo gives us Coulomb’s law,

So, the Guass law becomes

()

Eix] ==V = —

| megre

The derivation of Coulomb’s law using the potential was somewhat more involved than the technique using
Gauss’ law alone. However, as we’ll now see, introducing the potential allows us to write down the solution to
essentially any problem.

1.3.3. Field Lines

The usual way of depicting a vector isto draw an arrow whose length is proportional to the magnitude. For the
electric field, there’s a slightly different, more useful way to show what’s going on. We draw continuous lines,
tangent to the electric field E, with the density of lines proportional to the magnitude of E. This innovation, due
to Faraday, iscalled thefield line. Field linesare continuous. They begin and end only at charges. They can never

cross. Thefield lines for positive and negative point charges are:

. -] |
., '] -8
._0_, : Ou-__
W |

By convention, the positive charges act as sources for the lines, with the arrows emerging. The negative charges

act as sinks, with the arrows approaching. It’s also easy to draw the equipotentials — surfaces of constant ¢ —
on this same figure below. These are the surfaces along which you can move a charge without doing any work.
The relationship E = —V¢ ensures that the equipotentials cut the field lines at right angles. We usually draw them

as dotted lines:
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Meanwhile, we can (very) roughly sketch the field lines and equipotentials for the dipole (on the left) and for a
pair of charges of the same sign (on the right):
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1.3.4. Electrostatic Equilibrium

Here’s a simple question: can you trap an electric charge using only other charges? In other words, can you find
some arrangements of charges such that atest charge sitsin stable equilibrium, trapped by the fields of the others.
There’s a trivial way to do this: just allow a negative charge to sit directly on top of a positive charge. But let’s
throw out this possibility. We’ll ask that the equilibrium point lies away from all the other charges.

There are some simple set-ups that spring to mind that might achieve this. Maybe you could place four positive
charges at the vertices of a pyramid; or perhaps 8 positive charges at the corners of a cube. Is it possible that a
test positive charge trapped in the middle will be stable? It’s certainly repelled from all the corners, so it might
seem plausible.

The answer, however, isno. Thereis no e ectrostatic equilibrium. You cannot trap an electric charge using only
other stationary electric charges, at least not in a stable manner. Since the potential energy of the particle is
proportional to ¢, mathematically, this is the statement that a harmonic function, obeying V¢ = 0, can have no
minimum or maximum.

To prove that there can be no electrostatic equilibrium, let’s suppose the opposite: that there is some point in
empty space r* that is stable for a particle of charge g > 0. By “empty space”, we mean that p(r) = 0 in a
neighbourhood of r.. Because the point is stable, if the particle moves away from this point then it must always
be pushed back. This, in turn, means that the electric field must always point inwards towards the point r«; never

away. We could then surround rx by a small surface S and compuite,
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But, by Gauss’ law, the right-hand side must be the charge contained within Swhich, by assumption, is zero. This
isour contradiction: electrostatic equilibrium does not exist.

Of course, if you’re willing to use something other than electrostatic forces then you can construct equilibrium
situations. For example, if you restrict the test particle to lie on a plane then it’s simpleto check that equal charges
placed at the corners of a polygon will result in a stable equilibrium point in the middle. But to do this you need

to use other forces to keep the particle in the plane in the first place.

1.3.5. Electrostatic Energy

There is energy stored in the electric field. In this section, we calculate how much. Let’s start by recalling a fact
from our first course on classical mechanicsl. Suppose we have some test charge g moving in a background
electrostatic potential ¢. We’ll denote the potential energy of the particle as U(r). The potential U(r) of the particle

can be thought of as the work done bringing the particle in from infinity;

T I
.'l |_]_‘: — — ! l'.' . |.|I|_' = i} [ ";-I_"-'l . r'll' .'I||'.-|I]':

where we’ve assumed our standard normalization of ¢(r) —» 0 asr — oo.

Consider a distribution of charges which, for now, we’ll take to be made of point charges qi a positionsri. The
electrostatic potential energy stored in this configuration is the same as the work required to assemble the
configuration in the first place.

So how much work does it take to assemble a collection of charges?

WEell, the first chargeisfree. In the absence of any electric field, you can just put it whereyou like — say, rl. The
work required is W1 = 0. To place the second charge at r2 takes work,

W, - ez |
4 I.T"|| ||_ = :._Il

Note that if the two charges have the same sign, so q1g2 > 0, then W2 > 0 which istelling us that we need to put
work in to make them approach. If q1g2 < 0 then W2 < 0 where the negative work means that the particleswanted
to be drawn closer by their mutual attraction.

The third charge has to battle against the electric field due to both g1 and g.. The work required is

W — 3% (_ g m )
I lmeg \ |ra —ra| vy — rg

i
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and so on. Thetotal work needed to assemble al the charges is the potential energy stored in the configuration,

| iy . l ell s
] =‘ZI ”.l = l_—IJUZ |L'- _Ill.r.'l

Where Y)i < j meansthat we sum over each pair of particles once. In fact, you probably

could have just written down as the potential energy stored in the configuration. The whole purpose of the above
argument was redlly just to nail down afactor of 1/2:do we sum over al pairsof particles ;i < j or al particles.
The answer, as we have seen, is al pairs.

We can make that factor of 1/2 even more explicit by writing,

; | I il 4
S ot o i

where now we sum over each pair twice. The potential at ri dueto all the other

chargesqj ,jEiis,

| 75
dHT: | = -
: LT+ z s =1y

which means that we can write the potential energy as
"

= lj E:r.'..- WYy

Thisisthe potential energy for aset of point charges. But thereis an obvious generalization to charge distributions
p(r). We’ll again assume that p(r) has compact support so that the charge is localised in some region of space.
The potential energy associated to such a charge distribution should be

where we can quite happily take the integral over al of R3, safe in the knowledge that anywhere that doesn’t
contain charge has p(r) = 0 and so won’t contribute. Now thisisin aform that we can start to play with. We use

Gauss’slaw to rewrite it as,

lll: ;:[ / Ir:'. :T'E'Ir_'l E= S

/ i [V (Eg) — E« Vi

i
=
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But the first term is a total derivative. And since we’re taking the integral over all of space and ¢(r) —» Oasr —
oo, thisterm just vanishes. In the second term we can replace V¢ = —E. Wefind that the potential energy stored in

acharge distribution has an elegant expression solely in terms of the electric field that it creates,

r'=7$"/'-”r EE

A Quick Foray into Quantum Electrodynamics

To assign a meaning of “radius” to seemingly point-like particles, we really need the machinery of quantum field
theory. In that context, the size of the electron is caled its Compton wavelength. This is the distance scale at
which the electron gets surrounded by a swarm of electron-positron pairs which, roughly speaking, smears out

the charge distribution. This distance scaleis

For the whol e story to hang together, we require

[}

i

:‘".'|||,||'

This is an almost famous combination of constants. It’s more usual to define the combination,

i

f = ———

| g
Thisis known as the fine structure constant.
1.4. The For ce Between Electric Dipoles
As an application of our formulafor electrostatic energy, we can compute the force between two, far separated
dipoles. We place thefirst dipole, pl, at the origin. It givesriseto a potential,

Now, at some distance away, we place a second dipole. We’ll take this to consist of a charge Q at position r and
acharge —Q at position r — d, with d « r. The resulting dipole moment is p2 = Qd. We’re not interested in the
energy stored in each individual dipole; only in the potential energy needed to bring the two dipoles together.
Thisisgiven by,
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where, to get to the second line, we’ve Taylor expanded the denominator of the second term. This final expression

1]
—
=
-
-
L
-
|

can be written in terms of the second dipole moment. We find the nice, symmetric expression for the potential
energy of two dipoles separated by distancer,

EF = I (F‘I ‘P2 Spprlips I':')
- J:J” I.| - l|--.I

But, we know from our first course on dynamics that the force between two objectsisjust given by F=-VU. We

learn that the force between two dipolesis given by,

P — 1 v (.'llr.lq 'J.'_lpl_'l]._. = = Pi t|ZI£)
o

The strength of the force, and even its sign, depends on the orientation of the two dipoles. If p1 and pzlie paralle
to each other and to r then the resulting forceis attractive. If p1 and p2 point in opposite directions, and lie parallel

tor, then the force is repulsive. The expression above allows us to compute the general force.

1.5. Magnetostatics

Charges giverise to electric fields. Current give rise to magnetic fields. In this section, we will study the
magnetic fields induced by steady currents. This means that we are again |ooking for time independent solutions
to the Maxwell equations. We will also restrict to situations in which the charge density vanishes, so p = 0. We
can then set E = 0 and focus our attention only on the magnetic field. We’re left with two Maxwell equations to
solve:

V x B = jgd

V-B=10
If you fix the current density J, these equations have a unigue solution.
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1.5.1. Steady Currents

Because p = 0, there can’t be any net charge. But, of course, we still want charge to be moving! This means that
we necessarily have both positive

and negative charges which balance out at all pointsin space. Nonetheless, these charges can move so thereisa
current even though there is no net charge transport. This may sound artificial, but in fact it’s exactly what happens
in atypical wire. In that case, there is background of positive charge due to the lattice of ions in the metal.
Meanwhile, the electrons are free to move. But they all move together so that at each point we still have p = 0.
The continuity eguation, which captures the conservation of electric charge, is

e - ;

Since the charge density is unchanging (and, indeed, vanishing), we have
Vg =I

Mathematicaly, thisis just saying that if a current flows into some region of space, an equal current must flow

out to avoid the build up of charge. Note that thisis consistent with since, for any vector field, V. = (V xB) =0.

1.5.2. Ampere’s Law
The first equation of magnetostatics,

fﬁ-ﬁ:yom

is known as Ampere’s law. As with many of these vector differential equations, there is an equivalent form in
terms of integrals. In this case, we choose some open surface Swith boundary C = &S. Integrating over the surface,

we can use Stokes’ theorem to turn the integral of V X B into aline integral over the boundary C,

F. 4
| v
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/ VvV xB.dS = ![ B - dr =y / J - dS
g o L W

Recall that there’s an implicit orientation in these equations. The surface S comes with a normal vector “n which

points away from Sin onedirection. Theline integral around the boundary isthen donein the right-handed sense,
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meaning that if you stick the thumb of your right hand in the direction “n then your fingers curl in the direction
of theline integral.
Theintegral of the current density over the surface Sisthe same thing as the total current | that passes through S.

-f B dr= I|'l||.'I
1.5.3. A Long Straight Wire

Consider an infinite, straight wire carrying current 1. We’ll take it to point in the "z direction. The symmetry of

Ampere’s law in integral form then reads

the problem is jumping up and down telling us that we need to use cylindrical polar coordinates, (r, ¢, z), where
r = sgrt(x2 + y2) istheradial distance away from the wire.

We take the open surface Sto liein the x — y plane, centered on the wire. For the line integral to give something
that doesn’t vanish, it’s clear that the magnetic field has to have some component that lies along the circumference
of the disc.

But, by the symmetry of the problem, that’s actually the only component that B can have: it must be of the form
B = B(r) “¢. (If this was a bit too quick, we’ll derive this more carefully below). Any magnetic field of this form
automatically satisfies the second Maxwell equation V + B = 0. We need only worry about Ampere’s law which

tellsus

f B-idr = _Ili::rl/ T r.llr' = f_-_.."jl.::r':l =||.',._|||
oA wf
We see that the strength of the magnetic field is

. ,I-'|||r
B = :lj'w-,:'

The magnetic field circles the wire using the “right-hand rule”: stick the thumb of your right hand in the direction

of the current and your fingers curl in the direction of the magnetic field. Note that the simplest example of a
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magnetic field fals off as 1/r. In contrast, the ssmplest example of an electric field — the point charge — fals of as
1/r2. Y ou can trace this difference back to the geometry of the two situations. Because magnetic fields

are sourced by currents, the smplest example is a straight line and the 1/r fall-off is because there are two
transverse directions to the wire. When we look at aline of charge, the electric field also drops off as 1/r.

1.5.4. Surface Currents and Discontinuities

Consider the flat plane lying at z = 0 with a surface current density that we’ll call K. Note that K is the current
per unit length, as opposed to Jwhich isthe current per unit area. Y ou can think of the surface current as a bunch
of wires, all lying parallel to each other. We’ll take the current to lie in the x-direction: K = K"x as shown below.

¥
] K

From our previous result, we know that the B field should curl around the current in the right-handed sense. But,
with an infinite number of wires, this can only mean that B is oriented aong the y direction. In fact, from the

symmetry of the problem, it must look like

o=/

with B pointing in the —"y direction when z > 0 and in the +"y direction when z < 0. We write,

B=-—-8:¥

with B(z) = —B(-z). We invoke Ampere’s law using the following open surface:
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with length L in the y direction and extending to +-z. We have,

’f Bdr = LE(z)—=LE(—z)=2LEBIz) = AL
so we find that the magnetic field is constant above an infinite plane of surface current,
B(z) = Holk z =0

¥

Thisisrather similar to the case of the electric field in the presence of an infinite plane of surface charge.

1.5.5. A Solenoid

A solenoid consists of a surface current that travels around a cylinder. It’s simplest to think of a single current-
carrying wire winding many times around the outside of the cylinder. (Strictly speaking, the cross-sectional shape
of the solenoid doesn’t have to be a circle — it can be anything. But we’ll stick with a circle here for simplicity).
To make life easy, we’ll assume that the cylinder is infinitely long. This just means that we can neglect effects
due to the ends.

We’ll again use cylindrical polar coordinates, (r, ¢, z), with the axis of the cylinder along “z. By symmetry, we
know that B will point along the z-axis. Its magnitude can depend only on the radial distance: B = B(r)"z. Once
again, any magnetic field of thisform immediately satisfies

V - B=0.

=

i 3
]
]

We solve Ampere’s law in differential form. Anywhere other than the surface of the solenoid, we have J= 0 and
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dr
Outside the solenoid, we must have B(r) = 0 since B(r) is constant and we know B(r) — O asr — . To figure

VxB=0) =

out the magnetic field inside the solenoid, we turn to the integral form of Amp ere’s law and consider the surface
S, bounded by the curve C shown in the figure. Only the line that runs inside the solenoid contributes to the line

integral. We have,

_[ B di=BL =i NL
ar L

where N isthe number of windings of wire per unit length. Welearn that inside the solenoid, the constant magnetic
field isgiven by,

B=p,INz
1.5.6. The Vector Potential

For the simple current distributions of the last section, symmetry considerations were enough to lead us to a
magnetic field which automatically satisfied

V.B=1

But, for more general currents, this won’t be the case. Instead we have to ensure that the second magnetostatic

Maxwell equation is aso satisfied.
In fact, thisis simple to do. We are guaranteed asolutionto V- B = 0 if we write the magnetic field as the curl

of some vector field,

BE=VxA

Here A is called the vector potential. While magnetic fields that can be written in the form certainly satisfy V -

B =0, the converseis aso true; any divergence-free magnetic field can be written as for some A.
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(Actualy, this previous sentence is only trueif our space has a suitably simple topology. Since we nearly always
think of space as R3 or some open ball on R3, werarely run into subtleties. But if space becomes more interesting
then the possible solutionsto V - B = 0 also become more interesting).

Ampere’s law becomes,

Vi B - -1'1._2.-\ L VIV A= |'"-"]

where, in the first equality, we’ve used a standard identity from Vector Calculus. This is the equation that we

have to solve to determine A and, through that, B.

« Something a Little Misleading: The Magnetic Scalar Potential
There is another quantity that is sometimes used called the magnetic scalar potential, Q. The idea behind this
potential is that you might be interested in computing the magnetic field in a region where there are no currents
and the electric field is not changing with time. In this case, you need to solve V x B = 0, which you can do by
writing
B=-VQ

Now calculations involving the magnetic field really do look identical to those involving the electric field.
However, you should be wary of writing the magnetic field in thisway. We can aways solve two of Maxwell’s
equations by writing E and B in terms of the electric potential ¢ and vector potential A and this formulation
becomes important as we move onto more advanced areas of physics. In contrast, writing B = —VQ is only useful
in alimited number of situations. The reason for thisreally getsto the heart of the difference between electric and
magnetic fields: electric charges exist; magnetic charges don’t!

1.6. Bio-Savart Law:
The Biot-Savart law allows us to determine the magnetic field at some position in space that is due to an el ectric

current. More precisely, the Biot-Savart law allows us to calculate the infinitesimal magnetic field,d—B> , that is
produced by a small section of wire, o carrying current, |1, such that i is co-linear with the wire and pointsin

the direction of the €ectric current:

1B — pipd dl %7

dx P2

where, 1, isthe vector from the element of wire, dI”, to the point where we would like to determine the magnetic
field, asillustrated in Figure below. o is a constant of proportionality called the “permeability of free space”, and
has the value po=4nx10"" T-m/A.
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We’re now going to use the vector potential to solve for the magnetic field B in the presence of a genera
current distribution. From now, we’ll always assume that we’re working in Coulomb gauge and our vector

potential obeysV - A =0. Then Ampere’s law becomes awhole ot easier: we just have to solve,

VA = —jgd
But this is just something that we’ve seen already. To see why, it’s perhaps best to write it out in Cartesian

coordinates. This then becomes three equations,
Vidi=—d; (i=1,2,3)

and each of these is the Poisson equation.

It’s worth giving a word of warning at this point: the expression V2A issimplein Cartesian coordinates where, as
we’ve seen above, it reduces to the Laplacian on each component. But, in other coordinate systems, this is no
longer true. The Laplacian now also acts on the basis vectors such as “r and “¢. So in these other coordinate
systems, V2A is alittle more of a mess. (Y ou should probably use the identity V2A = -V x (V x A) + V(V .A) if
you really want to compute in these other coordinate systems).

Anyway, if we stick to Cartesian coordinates then everything is ssmple. We know how to write down the most
general solution using Green’s functions. It is

Jil %M

Afx) =22 | Byt DT
4= r | — x|

Or, if you’re feeling bold, you can revert back to vector notation and write

ISI."\:.I == ﬂll / I.Ir": I..'l iil—
i |Z'{ = :":'Ill

1.7. The Magnetic Field
Simply we can calculate and compute the magnetic field B = VXA. Again, we need to remember that the V acts
on the x rather than the x’. We find

Bix| = L] / A3 Jix’) x (x —x)

I J |3 — x*|*
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Thisisknown asthe Biot-Savart law, which was discussed earlier. It describes the magnetic field due to a general
current density.

Thereisadlight variation on above equation of B(x) which more often goes by the name of the Biot- Savart law.
Thisarisesif the current isrestricted to athin wirewhich traces out acurve C. Then, for acurrent density Jpassing
through a small volume 6V , we write I8V = (JA)dx where A is the cross sectiona area of the wire and 6x lies
tangent to C. Assuming that the cross-sectional area is constant throughout the wire, the current | = JA is also

constant. The Biot-Savart law becomes,

upd [ o’ = (x—%x"
Bix) '.' / .
Ir feo X —

1.7.1.An Example: The Straight Wire Revisited
Of course, we adready derived the answer for a straight wire in without using this fancy vector potential
technology. Before proceeding, we should quickly check that the Biot-Savart law reproduces our earlier result.

As before, we’ll work in cylindrical polar,

- | =9

L -

coordinates. We take the wire to point along the "z axis and use r? = x2 + y? as our radial coordinate. This means
that the line element along the wire is parametrised by dx'="zdz and, for a point x away from the wire, the vector

dx'x(x—x") points along the tangent to the circle of radiusr,
dx' % (x—x) =red

So we have

R Jtﬁ [ & = A

=L 1 = - —

1.7.2. A Mathematical Diversion: The Linking Number
There’s a rather cute application of these ideas to pure mathematics. Consider two closed, non-intersecting

curves, C and C', in R®. For each pair of curves, thereis an integer n € Z called the linking number which tells
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you how many times one of the curves winds around the other. For example, here are pairs of curves with

linking number [n|=0, 1 and 2.

QO D

Curves with Inking number n =0, n =1 and n = 2

To determine the sign of the linking number, we need to specify the orientation of each curve. In the last two
figures above, the linking numbers are negative, if we traverse both red and blue curves in the same direction.
The linking numbers are positive if we traverse one curve in a clockwise direction, and the other in an anti-
clockwise direction. Importantly, the linking number doesn’t change as you deform either curve, provided that
the two curves never cross. In fancy language, the linking number is an example of atopological invariant. There
is an integral expression for the linking number, first written down by Gauss during his exploration of
electromagnetism. The Biot-Savart formula offers a simple physics derivation of Gauss’ expression. Suppose that
the curve C carriesa current |. This sets us a magnetic field everywhere in space.

We will then compute
§ Bddx’
around another curve C. (If you want ajustification for computing then you can think of it asthe work done when

transporting a magnetic monopole of unit charge around C, but this interpretation isn’t necessary for what

follows.) The Biot-Savart formula gives,
Y . ppd [ . o % (x — x)
?( Bix') - e’ = LJJ b 7[ | =
Jor g ol Jo X=X

We’ve seen that the Maxwell equations forbid magnetic monopoles with a long-range B ~ 1/r? fall-off. So what

1.8. Magnetic Dipoles
isthe generic fal-off for some distribution of currents which arelocalised in aregion of space? In this section we

will see that, if you’re standing suitably far from the currents, you’ll typically observe a dipole-like magnetic
field.
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1.8.1. A Current Loop

We start with a specific, simple example. Consider acircular loop of wire C of radius R carrying a current I. We
can guess what the magnetic field looks like simply by patching together our result for straight wires: it must
roughly take the shape shown in the figure However, we can be more accurate. Here werestrict ourselves only to

the magnetic field far from the loop.

To compute the magnetic field far away, we won’t start with the Biot-Savart law but instead return to the
original expression for A. We’re going to return to the notation in which a point in space is labelled as r rather
than x. (Thisis more appropriate for long-distance distance fields which are essentially an expansioninr = |r|).
The vector potential isthen given by,

i g T 'II. |.r ]
.i‘i:l'.l — / ar —
k

Writing thisin terms of the current | (rather than the current density J), we have

i ."'Il! -f ar' i
T Jo |r—T|

We want to ask what thislooks like far from the loop. Just as we did for the electrostatic potential, we can

Taylor expand the integrand using,

.'||.I|I i ’ J 8 ul
Alr) = |I|_' 7/ dr’ (— + ; __l T )

The first term in this expansion vanishes because we’re integrating around a circle. This is just a reflection of
the fact that there are no magnetic monopoles. For the second term, there’s a way to write it in slightly more

manageable form. To see this, let’s introduce an arbitrary constant vector g and use thisto look at,
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Recall that, from the point of view of thisintegral, both g and r are constant vectors; it’s the vector I’ that we’re
integrating over. Thisis now the kind of line integral of avector that allows us to use Stokes’ theorem. We

have,

' / I ' - ] . ol .
f dr’ - glr-r)= / dS -V x (glr-r')) = / dS; e | grriry}
of o 5

ul

where, in the final equality, we’ve resorted to index notation to help us remember what’s connected to what.

Now the derivative ¢’ acts only on the r’ and we get

A%— r|'!'I - - j"l| = ["-'I-I""I_-".=__|J._-_'_|'|'.--'_,i = i - / a8 «r
sl of 5 o 5

But thisistrue for al constant vectors g which meansthat it must also hold as a vectoridentity once we strip

away g. We have
1£ dr' (r-r)=8x%xr
o
where we’ve introduced the vector area S of the surface S bounded by C, defined as

5=/r;5

If the boundary C liesin aplane — asit does for us — then the vector S points out of the plane.

1.8.2. General Current Distributions
We can now perform the same kind of expansion for agenera current distribution Jlocalised within some

region of space. We use the Taylor expansion in the general form of the vector potential,

Lir) = Ha | f3, Jilr') L W (-'I-:l"" n St (e - i3
o |T 5 : |1' = 1'-"| l.— J . ] - I__.:

where we’re using a combination of vector and index notation to help remember how the indices on the left and

right-hand sides match up. The first term above vanishes. Heuristically, this is because currents can’t stop and
end, they have to go around in loops. This means that the contribution from one part must be cancelled by the

current somewhere else. To see this mathematically, we use the slightly odd identity,

r'llll--|l_.:|l'| — Ef.-l-l.lll.l:l bR = Wy = IrI

32|Page




where the last equality follows from the continuity condition V - J= 0. Using this, we see that the first term in

the equation of A is atotal derivative (of ¢/0r' rather than /0r;) which vanishes if we take the integral over R®
and keep the current localized within some interior region.

l'--l_,l..f..l'_..".l_l = :".'Iu"'ll-l".-".'. b Ty 4+ Jety = S 4+ Jui

Because Jin equation of Aj isafunction of r’, we actually need to apply thistrick to the Jr'; termsin the expression.
We once again abandon the boundary term to infinity. Dropping the argument of J, we can use the identity above
to write the relevant piece of the second term as,

- % i y : g ; : :
j ||I"'."r ..II_I T .||' ; = [.”'.'I,I' fl:.lrll'.I == ._|r_||'l_- = / |.'II‘I' _J-'rl [ ]_"lll — 'I|['I L |'||

But now thisisinaform that is ripe for the vector product identity ax (b x c) =b(a = ¢) —c(a * b). Thismeans

/ d'r’ Jr-r') = _—llj' P j i

With thisin hand, we see that the long distance fall-off of any current distribution again takes the dipole form

that we can rewrite thisterm as

R U
Alr) = -l—_' =

now with the magnetic dipole moment given by the integral,

Y
= / d°r' ' = J{r')

1.9. Magnetic For ces
We’ve seen that a current produces a magnetic field. But a current is simply moving charge. And we know from

the Lorentz force law that a charge g moving with velocity v will experience aforce.

F=gvxB
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This means that if a second current is placed somewhere in the neighborhood of the first, then they will exert a
force on one another. Our goa in this section isto figure out this force.

1.9.1. Force Between Currents

Let’s start simple. Take two parallel wires carrying currents |1 and |2 respectively. We’ll place them a distance d
apart in the x direction. The current in the first wire sets up amagnetic field. So if the charges in the second wire

are moving with velocity v, they will each experience aforce

where "y isthe direction of the magnetic field experienced by the second wire as shown in the Figure above. The
next step is to write the velocity v in terms of the current 12 in the second wire. We did this when we first
introduced the idea of currents: if there’s a density n of these particles and each carries charge g, then the current
density is

.-F-. . .'|.l||".,'

For awire with cross-sectional area A, the total current isjust 12 = LA. For our set-up, J» = X"z Finaly, we want
to compute the force on the wire per unit length, f. Since the number of charges per unit lengthis nA and F isthe

force on each charge, we have,

o

|'|.|r Ir':l f.'..rllr'\l
f = nAF = ('f-—_']_'.'-):e X ¥ =— ('—f.f_ =)

Thisis our answer for the force between two parallel wires. If the two currents are in the same direction, so that

1112 > 0, the overal minus sign means that the force between two wires is attractive. For currents in opposite

directions, with 1112 < O, the force isrepulsive.

1.9.2. Forceand Energy for a Dipole
We start by asking a slightly different question. We’ll forget about the second current and just focus on the first:
call it J(r). We’ll place this current distribution in a magnetic field B(r) and ask: what force doesit feel ? In general,

there will be two kinds of forces. There will be a force on the centre of mass of the current distribution, which
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will make it move. There will also be a torque on the current distribution, which will want to make it re-orient
itself with respect to the magnetic field. Here we’re going to focus on the former. Rather remarkably, we’ll see
that we get the answer to the latter for freel

The Lorentz force experienced by the current distribution is

F = [”‘:3" Jir) = Bir)
J1

We’re going to assume that the current is localised in some small region r = R and that the magnetic field B varies
only slowly in thisregion. This allows usto Taylor expand,
Bir)=B(R)+ [r-V)Bi{R) +

We then get the expression for the force

F=-B(R) > /.rf"':.' Jir) + / d'r J(r) % [(r- VIB(R)] +...
Jy S

The first term vanishes because the currents have to go around in loops. We’re going to do some fiddly
manipulations with the second term. To help us remember that the derivative V is acting on B, which is then

evauated at R, we’ll introduce a dummy variable r' and write the force as

| G [-.'"{r Jir) x [(r- VB ‘
21 '—R

o
Now we want to play around with this. First, using the fact that V x B = 0 in the vicinity of the second current,

we’re going to show, that we can rewrite the integrand as
Jir) % [ir« VIB(r")] = =¥’ x [(r-B(r"))J(r)
But the terms in the brackets are the components of V x B and so vanish. So our result is true and we can

rewrite the force,

F=-V'5 [rn‘".- 'I'-H':I"I'lrtll'l‘
ol =

Now we need to manipulate this alittle more. We make use of the identity where we replace the constant vector

by B. Thus, up to some relabelling, isthe same as

[IJ':".- (B-r)J =-B x ] drIxr=-=Bxm
Ju - J1

where m is the magnetic dipole moment of the current distribution. Suddenly, our expression for the force is

looking much nicer: it reads,
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F=V x (B xm)

where we’ve dropped the I' = R notation because, having lost the integral, there’s no cause for confusion: the
magnetic dipole misaconstant, while B variesin space. Now we invoke a standard vector product identity. Using
V = B =0, this simplifies and we’re left with a simple expression for the force on a dipole

F=V(B - m)
After all that work, we’re left with something remarkably simple. Moreover, like many forces in Newtonian
mechanics, it can be written as the gradient of a function. This function, of course, is the energy U of the dipole
in the magnetic field,

U=-B m
Thisisan important expression that will play arolein later coursesin Quantum Mechanics and Statistical Physics.
For now, we’ll just highlight something clever: we derived by considering the force on the centre of mass of the
current. Thisisrelated to how U depends on r. But our final expression also tells us how the energy depends on
the orientation of the dipole m at fixed position. Thisis related to the torque. Computing the force gives us the
torque for free. Thisis because, ultimately, both quantities are derived from the underlying energy.
The For ce Between Dipoles
As a particular example of the force, consider the case where the magnetic field is set up by a dipole m1. We

know that the resulting long-distance magnetic field is,

Blr) — J_.. (:;;.“ &\ ””)

Iu{

Now we’ll consider how this affects the second dipole m = mp.

. i Sy o rjlmg ) — myg c mg
F=— .
|7 il

wherer is the vector from m1 to m2. Note that the structure of the force is identical to that between two electric

dipoles. Thisis particularly pleasing because we used two rather different methods to calculate these forces. If

we act with the derivative, we have

-.'g-ll.'“ .
F=——|{m -rims+ (ms-rim; + (m; -majr — 5oy - riims - rir

First notethat if we swap m1 and m2, so that we also send r — —r, then theforce swaps sign. Thisisamanifestation
of Newton’s third law: every action has an equal and opposite reaction. Recall from Dynamics and Relativity

lectures that we needed Newton’s third law to prove the conservation of momentum of a collection of particles.
36| Page




We see that this holds for a bunch of dipoles in a magnetic field. But there was also a second part to Newton’s
third law: to prove the conservation of angular momentum of a collection of particles, we needed the forceto lie
parallel to the separation of thetwo particles. And thisis not truefor theforce. If you set up acollection of dipoles,
they will start spinning, seemingly in contradiction of the conservation of angular momentum. What’s going on?!
WEell, angular momentum is conserved, but you have to look elsewhere to seeit. The angular momentum carried
by the dipolesis compensated by the angular momentum carried by the magnetic field itself.

Finally, a few basic comments. the dipole force drops off as 1/r4, quicker than the Coulomb force.
Correspondingly, it grows quicker than the Coulomb force at short distances. If m1 and m2 point in the same
direction and lie parallel to the separation R, then the forceis attractive. If m1 and m2 point in opposite directions

and lie parallel to the separation between them, then the force is repulsive.

So What isa Magnet?

Until now, we’ve been talking about the magnetic field associated to electric currents. But when asked to envisage
amagnet, most people would think if a piece of metal, possibly stuck to their fridge, possibly in the form of abar
magnet like the one shown in the picture. How are these related to our discussion above? These metas are
permanent magnets. They often involve iron. They can be thought of as containing many microscopic magnetic
dipoles, which align to form alarge magnetic dipole M. In a bar magnet, the dipole M points between the two

poles.

This means that the leading force between two magnets is described by our result. Suppose that M1, M2 and the
separation R al lieaong aline. If M1 and M2 point in the same direction, then the North pole of one magnet
faces the South pole of another and tells us that the force is attractive. Alternatively, if M1 and M2 point in
opposite directions then two poles of the same type face each other and the forceis repulsive. This, of course, is
what we all learned as kids. The only remaining question is: where do the microscopic dipole moments m come
from? Y ou might think that these are due to tiny electric atomic currents but this isn’t quite right. Instead, they
have a more fundamental origin. The electric charges — which are electrons — possess an inherent angular
momentum called spin. Roughly you can think of the electron as spinning around its own axis in much the same
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way as the Earth spins. But, ultimately, spin is a quantum mechanical phenomenon and this classical analogy

breaks down when pushed too far. The magnitude of the spinis:

|
=} _':T.'In'

-

where, recall, 7 has the same dimensions as angular momentum. We can push the classical analogy of spin just a
little further. Classically, an eectrically charged spinning ball would give rise to a magnetic dipole moment. So

one may wonder if the spinning electron also gives rise to a magnetic dipole. The answer isyes. It is given by,

;
nm = §—=
LT

where e is the charge of the electron and m is its mass. The number g is dimensionless and called, rather
uninspiringly, the g-factor. It has been one of the most important numbers in the history of theoretical physics,
with several Nobel prizes awarded to people for correctly calculating it! The classical picture of a spinning
electron suggests g = 1. But this is wrong. The first correct prediction (and, correspondingly, first Nobel prize)

was by Dirac. His famous relativistic equation for the electron gives,

L

1.10. Units of Electromagnetism
More than any other subject, electromagnetism is awash with different units. In large part this is because
€l ectromagnetism has such diverse applications and everyone from astronomers, to el ectrical engineers, to particle
physicists needs to useit. But it’s still annoying. Here we explain the basics of SI units.
The Sl unit of charge is the Coulomb. As of 2019, the Coulomb is defined in terms of the charge —e carried by
the electron. Thisis taken to be exactly,

e = 1602176634 x 10~ C
If you rub a balloon on your sweater, it picks up a charge of around 10 C or so. A bolt of lightening deposits a
charge of about 15 C. The total charge that passes through an AA battery in its lifetime is about 5000 C. The SI
unit of current is the Ampere, denoted A. It is defined as one Coulomb of charge passing every second. The
current that runs through single ion channels in cell membranes is about 10 %2 A. The current that powers your
toaster isaround 1 A to 10 A. There is a current in the Earth’s atmosphere, known as the Birkeland current, which
creates the aurora and varies between 105 A and 106 A. Galactic size currents in so-caled Seyfert galaxies
(particularly active galaxies) have been measured at a whopping 1018 A. The electric field is measured in units
of NC L. The electrostatic potential ¢ has units of Volts, denoted V, where the 1 Volt is the potential difference
between two infinite, parallel plates, separated by 1 m, which create an electric field of 1 NC ™.
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A nervecdl sitsat around 10-2V . An AA battery sitsat 1.5V . The largest manmade voltage is 107 V produced
in a van der Graaf generator. This doesn’t compete well with what Nature is capable of. The potential difference
between the ends of alightening bolt can be 108 V . The voltage around a pulsar (a spinning neutron star) can be
1015V .

The unit of amagnetic field isthe Tesla, denoted T. A particle of charge 1 C, passing through a magnetic field of
1T at 1 ms—1will experience aforce of 1 N. From the examples that we’ve seen above it’s clear that 1 Cisalot
of charge. Correspondingly, 1 T is a big magnetic field. Our best instruments (SQUIDs) can detect changes in
magnetic fields of 10-18 T. The magnetic field in your brain is 10-12 T. The strength of the Earth’s magnetic
field is around 10-5 T while a magnet stuck to your fridge has about 10—3 T. The strongest magnetic field we
can create on Earth isaround 100 T.

Again, Nature beats us quite considerably. The magnetic field around neutron stars can be between 106 T and
109 T. (Thereis an exception here: in “heavy ion collisions”, in which gold or lead nuclei are smashed together
in particle colliders, it is thought that magnetic fields comparabl e to those of neutron stars are created. However,
these magnetic fields are fleeting and small. They are stretch over the size of a nucleus and last for a millionth of
asecond or so). Asthe above discussion amply demonstrates, Sl units are based entirely on historical convention
rather than any deep underlying physics. A much better choiceisto pick units of charge such that we can discard
€0 and p0. There are two commonly used frameworks that do this, called Lorentz-Heaviside units and Gaussian
units. | should warn you that the Maxwell equations take a dightly different form in each. To fully embrace
natural units, we should also set the speed of light ¢ = 1. However we can’t set everything to one. There is one
combination of the fundamental constants of Nature which is dimensionless. It is known as the fine structure
constant,

2
e

B Areghe
and takes value o = 1/137. Ultimately, thisis the correct measure of the strength of the electromagnetic force. It

Qv

tellsusthat, in units with e = 2 = ¢ = 1, the natural, dimensionless value of the charge of the electronise~ 0.3

A History of Magnetostatics

Magnetism is a science with more than two millennia of recorded history. The attraction of ferrous objects to a
permanent magnet across a distance has been a source of curiosity since the iron age. Investigations of magnetic
phenomena led to the invention of steel magnets — needles and horseshoes — and the compass that enabled the
exploration of the planet. Feeble permanent magnets are widespread in Nature in the form of lodestones, pieces
of rock that are mainly composed of the iron oxide mineral magnetite (Fe 304). Outcrops can be magnetized by
the huge currentsin lightning strikes and such natural magnets were known and studied in ancient Greece, Egypt,
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China and Mesoamerica. Aristotle attributed early thoughts on the nature of magnetic attraction to Thales, who
was born in Milet in AsiaMinor in 624 BC. He was an animist who credited the magnet with a soul on account
of its ability to create movement. This strange idea was to persist in Europe until the 17th century. The magnet
itself isthought to be named after Magnesia, acity in AsiaMinor that was a source of lodestone. In the 5th century
BC, when Empedokles postulated the existence of four elements, Earth, Water, Air and Fire; magnetism was
related to Air with special effluvia somehow passing through pores in magnetic material, atheory echoed much
later by Descartes.

A more productive approach was followed in China (Needham 1962), where magnetism was linked to geomancy.
The art of adapting the residences of the living and the tombs of the dead to harmonize with local currents of the
cosmic breath demanded a knowledge of its direction. A South-pointer consisting of a carved lodestone spoon
free to rotate upon a polished baseplate (Fig.1) was in use in the first century BC, and may have been known
hundreds of years earlier. An important discovery, attributed to Zheng Gongliang in 1064, was that iron could
acquire a thermoremanent magnetization when rapidly cooled from red heat in the ambient magnetic field. A
short step led to the suspended magnetic needle, which was described by Shen Kua around 1088 and seen to
deviate, like the South-pointer, from a strictly North-South axis.

In the ensuing ferment in Europe and North America, it is often difficult to attribute credit for any advance,
distingui shing between who had the idea, who devised a convincing experimental demonstration, and who created
the first practical, working machine. Scientists and engineers belonged to different communities, with different
approaches. 19th century electromagnetic science was driven, however, by Michadl Faraday. Working entirely
by observation and experimentation, with no dependence on formal theory, he developed the concept of ‘magnetic
field’. Faraday classified materials as ferromagnetic (substances such as iron which were easily magnetized and
drawn towards stronger magnetic fields), paramagnetic (substances which are attracted by the field but much
more weekly than iron) or diamagnetic (materials which were pushed away by the field). Working with an
electromagnet, he discovered the phenomenon of ‘electromagnetic induction’ % that a flow of electricity can be
induced by a changing magnetic field. He demonstrated electrical <» mechanical energy conversion in a model
motor and a dynamo with steel permanent magnets, which were used in most of the early demonstrations, but
electromagnets proved indispensablefor later, practical el ectromagnetic machines. His conviction that amagnetic
field should have aninfluence on light led to his 1845 discovery of the magneto-optic Faraday effect ¥therotation
of the plane of polarization of light passing through amagnetic medium in adirection parallel to its magnetization.
A classical theory emerged to account simultaneously for magnetism and its relationship with electricity. Around
1824 Siméon Denis Poisson developed a mathematical theory of magnetostatics. Letters from Ampere to Fresnel
and Faraday found after his death show that by 1822 he had considered the possibility that the currents causing

ferromagnetism were ‘molecular’ rather than macroscopic in form. Wilhelm Weber formally presented the idea
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that ‘molecules’ of iron were capable of movement around their centres, suggesting that they lay in different
directions in unmagnetized material, but aligned in a common direction in the presence of an applied magnetic
field. This was the beginning of an explanation of hysteresis, the central phenomenon of technical magnetism,
demonstrated experimentally by James Ewing using a board of small, pivoting magnets. He then built an
ingeniousinstrument based on the bending of aferromagnetic current-carrying wirein the gap of an electromagnet
to measure B and H under AC and DC excitation.

The astonishing transformation of science and society that began in 1820 is known as the electromagnetic
revolution. By the end of the century it was heralding the electrification of the planet and changing forever human
communications, transportation and conditions of life and leisure. This was the second time that magnetic
technology changed the world.

1.11. Electrodynamics

For static situations, Maxwell’s equations split into the equations of electrostatics, and the equations of
magnetostatics. The only hint that there is a relationship between electric and magnetic fields comes from the fact
that they are both sourced by charge: electric fields by stationary charge; magnetic fields by moving charge. In

this section we will see that the connection becomes more direct when things change with time.

1.11.1. Faraday’s Law of Induction

“I was at first almost frightened when | saw such mathematical force made to bear upon the subject, and then
wondered to see that the subject stood it so well.” Faraday to Maxwell, 1857

One of the Maxwell equations relates time varying magnetic fields to electric fields,

|
VXE+D =

T
This equation tells us that if you change a magnetic field, you’ll create an electric field. In turn, this electric field
can be used to accelerate charges which, in this context, is usually thought of as creating a current in wire. The
process of creating a current through changing magnetic fieldsis called induction. We’ll consider a wire to be a
conductor, stretched along a stationary, closed curve, C, as shown in the figure below.

We will refer to closed wires of this type as a “circuit”. We integrate both sides of over a surface S which is
bounded by C,
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By Stokes theorem, we can write this as,

r " d [
}‘ E  dr = - /—Ew — / B dS

™

Recall that the line integral around C should be in the right-handed sense; if the fingers on your right-hand curl
around C then your thumb points in the direction of dS. (This means that in the figure dS points in the same
direction as B). To get the last equality above, we need to use the fact that neither C nor S change with time. Both
sides of this equation are usually given names. The integral of the electric field around the curve C is called the

electromotive force, E, or emf for short,

It’s not a great name because the electromotive force is not really a force. Instead it’s the tangential component
of the force per unit charge, integrated along the wire. Another way to think about it is as the work done on a unit
charge moving around the curve C. If thereis anon-zero emf present then the charges will be accelerated around

the wire, giving rise to a current. The integral of the magnetic field over the surface Sis called the magnetic flux

® through S,
P = / B-ds

i

it

The Maxwell equation can be written as,

™
'

In thisform, the equation is usually called Faraday’s Law. Sometimesit is called the flux rule.

Faraday’s law tells us that if you change the magnetic flux through Sthen acurrent will flow. There are anumber
of ways to change the magnetic field. You could ssmply move a bar magnet in the presence of circuit, passing it
through the surface S; or you could replace the bar magnet with some other current density, restricted to a second
wire C’, and move that; or you could keep the second wire C’ fixed and vary the current in it, perhaps turning it
on and off. All of these will induce a current in C. However, there is then a secondary effect. When a current
flowsin C, it will create its own magnetic field. We’ve seen how this works for steady currents. This induced
magnetic field will always be in the direction that opposes the change. Thisis caled Lenz’s law. If you like,
“Lenz’s law” is really just the minus sign in Faraday’s law. We can illustrate this with a simple example. Consider

the case where C is a circle, lying in a plane. We’ll place it in auniform B field and then make B smaller over

42 |Page




time, so '® < 0. By Faraday’s law, E > 0 and the current will flow in the right-handed direction around C as
shown. But now you can wrap your right-hand in adifferent way: point your thumb in the direction of the current
and let your fingers curl to show you the direction of the induced magnetic field. These are the circles drawn in
the figure. You see that the induced current causes B to increase inside the loop, counteracting the original
decrease.

Lenz’s law is rather like a law of inertia for magnetic fields. It is necessary that it works this way simply to ensure
energy conservation: if the induced magnetic field aided the process, we’d get an unstable runaway situation in

which both currents and magnetic fields were increasing forever.

B

Q %)

1.11.2. Faraday’s Law for Moving Wires:

There is another, related way to induce currents in the presence of a magnetic field: you can keep the field fixed,
but move the wire. Perhaps the simplest example is shown in the figure: it’s arectangular circuit, but where one
of the wiresis ametal bar that can slide backwards and forwards. This whole set-up is then placed in amagnetic

field, which passes up, perpendicular through the circuit.

B -—

- R {
i _..-:.': _.-H'"
7

Slide the bar to the left with speed v. Each charge g in the bar experiences a Lorentz force qvB, pushing it in the
y direction. This results in an emf which, now, is defined as the integrated force per charge. In this case, the

resulting emf is,
f\- — |'_|I_!:|.'I

where d isthe length of the moving bar. But, because the areainside the circuit is getting smaller, the flux through

C is also decreasing. In this case, it’s simple to compute the change of flux: it is,
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We see that once again the change of flux isrelated to the emf through the flux rule.

r_ll'i.ll

|'|I|l
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In this case, it is because the current involves charges moving with some speed u around the circuit. These too
feel a Lorentz force law, now pushing the bar back to the right. This means that if you let the bar go, it will not
continue with constant speed, even if the connection isfrictionless. Instead it will sslow down. Thisisthe analog

of Lenz’s law in the present case.

1.12. Inductance and M agnetostatic Energy:

Suppose that a constant current | flows along some curve C. From the results of calculated before we know that
this gives rise to a magnetic field and hence aflux @ = [ B - dS through the surface S bounded by C. Now
increase the current . This will increase the flux ®. But we’ve just learned that the increase in flux will, in turn,
induce an emf around the curve C. The minus sign of Lenz’s law ensures that this acts to resist the change of
current. The work needed to build up a current is what’s needed to overcome this emf.

1.12.1. Inductance

If acurrent | flowing around a curve C givesrisetoaflux @ = [ B - dS then theinductance L of the circuit is
defined to be,

The inductance is a property only of our choice of curve C.
An Example: The Solenoid

A solenoid consists of a cylinder of length | and cross-sectional area A shown in figure below.

We take | »VA so that any end-effects can be neglected. A wire wrapped around the cylinder carries current |

and winds N times per unit length.

44 |Page




Jr; = I|'I|| .|I _1'|
This means that a flux through a single turn is ®o = polNA. The solenoid consists of NI turns of wire, so the total

flux is,

b = ppd N2 Al = I NV
with V = Al the volume inside the solenoid. The inductance of the solenoid is therefore
1.12.2. Magnetostatic Energy
The definition of inductance is useful to derive the energy stored in the magnetic field. Let’s take our circuit C

with current I. We’ll try to increase the current. The induced emf is,

i [:- il 4'

it _"T

iy

Aswe mentioned above, the induced emf can be thought of as the work done in moving a unit charge around the
circuit. But we have current | flowing which means that, in time 6t, a charge 16t moves around the circuit and the

amount of work doneis,

il A4l dl L |-".'I.':-
SW =Bl =l = =l
iay -'I'II Kl __I i1

The work needed to build up the current is just the opposite of this. Integrating over time, we learn that the total

work necessary to build up acurrent | along a curve with inductance L is,

g 1
W=_LI"=<Id

Following our discussion for electric energy i, we identify this with the energy U stored in the system. We can

= J—j_.r / B .S = J—}|" l VxAds = —IFfji il = lj /”IH' J - A

where, in the last step, we’ve used the fact that the current density Jislocalised on the curve C to turn the integral

writeit as,

into one over all of space. At this point we turn to the Maxwell equation V x B = poJ to write the energy as,
I : 1 ' . .
U=— | d'x (VxB):-A=— [ & [V:(BxA)+B-(Vx A
Lltgy =t

We assume that B and A fall off fast enough at infinity so that the first term vanishes. We’re left with the simple

expression,

i,
=,

i /' B-B
Combining this with the equation of the electric field, we have the energy
stored in the el ectric and magnetic fields,
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We had to approach the energy in both the electric and magnetic fields in a rather indirect manner, by focussing
not on the fields but on the work done to assemble the necessary charges and currents. There’s nothing wrong
with this, but it’s not a very elegant approach and it would be nice to understand the energy directly from the
fields themselves. Second, we computed the energy for the electric fields and magnetic fields alone and then
simply added them. We can’t be sure, at this point, that there isn’t some mixed contribution to the energy such as
E.B.

1.13. Resistance:

Y ou may have noticed that our discussion above has been alittle qualitative. If the flux changes, we have given
expressions for the induced emf E but we have not given an explicit expression for the resulting current. And
there’s a good reason for this: it’s complicated. The presence of an emf means that there is a force on the charges
in the wire. And we know from Newtonian mechanics that a force will cause the charges to accelerate. Thisis
where things start to get complicated. Accelerating charges will emit waves of

electromagnetic radiation, a process that you will explore later. Relatedly, there will be an opposition to the
formation of the current through the process that we’ve called Lenz’s law.

So things are tricky. What’s more, in real wires and materials there is yet another complication: friction.
Throughout these lectures we have modelled our charges as if they are moving unimpeded, whether through the
vacuum of space or through a conductor. But that’s not the case when electrons move in real materials. Instead,
there’s stuff that gets in their way: various messy impurities in the material, or sound waves (usually called
phonons in this context) which knock them off-course, or even other electrons. All these effects contribute to a
friction force that acts on the moving electrons. The upshot of thisisthat the electrons do not accel erate forever.
Infact, they do not acceleratefor very long at all. Instead, they very quickly reach an equilibrium speed, anal ogous
to the “terminal velocity” that particles reach when falling in gravitational field while experiencing air resistance.
In many circumstances, the resulting current | isproportional to the applied emf. Thisrelationship iscalled Ohm’s

law. Itis,

E=1R
The constant of proportionality R is called the resistance. Theemf ise = [ E. dx. If we write E = -V¢, then E =
V , the potential difference between two ends of the wire. This gives us the version of Ohm’s law that is familiar
from school: V = IR. The resistance R depends on the size and shape of the wire. If the wire has length L and
cross-sectional area A, we define the resistivity as p = AR/L. Alternatively, we talk about the conductivity ¢ =
p.

The general form of Ohm’s law is then,
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Unlike the Maxwell equations, Ohm’s law does not represent a fundamental law of Nature. It is true in many,
perhaps most, materials. But not al. There is a very ssmple classical model, known as the Drude model, which
treats electrons as billiard balls experiencing linear drag which gives rise to Ohm’s law.. But a proper derivation
of Ohm’s law needs quantum mechanics and a more microscopic understanding of what’s happening in materials.
Needlessto say, thisis(way) beyond the scope of this course. So, at least in this small section, we will take Ohm’s
law as an extrainput in our theory.

When Ohm’s law holds, the physics is very different. Now the applied force (or, in this case, the emf) is
proportional to the velocity of the particles rather than the acceleration. It’s like living in the world that Aristotle
envisaged rather than the one Galileo understood. But it also means that the resulting calculations typically
become much simpler.

» An Example
Let’s return to our previous example of a slidying bar of length d and mass m which forms a circuit, sitting in a

magneticfield B = BZ. But now wewill takeinto account the effect of electrical resistance. Wetaketheresistance
of the dliding bar to be R. But we’ll make life easy for ourselves and assume that the resistance of the rest of the
circuit isnegligible.

There are two dynamical degrees of freedom in our problem: the position x of the sliding bar and the current |

that flows around the circuit. We take | > 0 if the current flows along the bar in the positive y direction. The

Lorentz force law tells us that the force on a small volume of the bar is F = IByZ. The force on the whole bar is

therefore,

P'=10dx
The equation of motion for the position of the wire is then,

mr = [ 3

Now we need an equation that governs the current I(t). If the total emf around the circuit comes from the induced
emf, we have,

)
|."5!' |
— —— —III|I.I|'|'

|'|I|I

Ohm’s law tells us that E = IR. Combining these, we get asimple differential equation for the position of the bar,

L
o
r I 7|

My = ————1F
i
which we can solve to see that any initial velocity of the bar, v, decays exponentialy:
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Note that, in this calculation we neglected the magnetic field created by the current. It’s simple to see the
qualitative effect of this. If the bar moves to the left, so x < 0, then the flux through the circuit decreases. The
induced current is | > 0 which increases B inside the circuit which, in accord with Lenz’s law, attempts to
counteract the reduced flux.

In the above derivation, we assumed that the total emf around the circuit was provided by the induced emf. This
is tantamount to saying that no current flows when the bar is stationary. But we can aso relax this assumption
and include in our analysis an emf Ep across the circuit (provided, for example, by a battery) which induces a

current lo = Eod/R. Now the total emf is,

s < s ey
E=&+ Lindwead = &9 — Bidr

Thetotal current isagain given by Ohmslaw | = E/R. The position of the bar is now governed by the equation,
i ]I.:In'I

miE = ~—[Ey— Bdt)

It

1.14. The Displacement Current
We’ve now worked our way through most of the Maxwell equations. We’ve looked at Gauss’ law (which is really

equivalent to Coulomb’s law)

vV -E=L
th

and the law that says there are no magnetic monopoles,

YV.-B=I
and Amp’ere’s law

T " E == _|'l'|'|l].
and now also Faraday’s law
B
VxE+—=0

it
In fact, there’s only one term left to discuss. When fields change with time, there is an extra term that appears in

Amp’ere’s law, which reads in full:

(2]
T " E — i) (1] T '|i_')

I |I|I

This extraterm is called the displacement current. It’s not a great name because it’s not a current. Nonethel ess,
as you can see, it sits in the equation in the same place as the current which is where the name comes from. The
displacement current term is different. This was arrived at by pure thought alone. This is one of Maxwell’s

contributions to the subject and, in part, why his name now lords over al four equations.

48 |Page




1.14.1. Adding Ampere’s Law with Displacement Current:
Let’s now see how adding the displacement current fixes the situation. We’ll first look at the abstract issue that

Ampere’s law requires V.J = 0. If we add the displacement current, then taking the divergence of gives,

,JL:I L BY =0

M

A (? o ’II.I:‘T ¥

But, using Gauss’s law, we can write eoV.E = p, so the equation above becomes
fi
T.I 4 I_ — |}

which is the continuity equation that tells us that electric ;:;;arge islocally conserved. It’s only with the addition
of the displacement current that Maxwell’s equations become consistent with the conservation of charge.

Now let’s return to our puzzle of the circuit and capacitor. Without the displacement current we found that B =0
when we chose the surface S’ which passes between the capacitor plates. But the displacement current tells us
that we missed something, because the build up of charge on the capacitor plates|eadsto atime-dependent electric

field between the plates.

where A isthe area of each plate and Q is the charge that sits on each plate, and we are ignoring the edge effects
which is acceptable as long as the size of the plates is much bigger than the gap between them. Since Q is
increasing over time, the electric field is also increasing,

|ll_|l_ J |.II|'_.II ]

fit)

By repeating the calculation ,we get an extraterm,

/ B - dr = / e L% = gl
Ji o5 )

From this equation, we found using Ampere’s law applied to the surface S.The figure below contradicts with
the ampere’s law and displacement current,

%
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1.14.2. Light wavesin terms of electromagnetic Maxwell’s equation:

We’ve derived two wave equations, one for E and one for B. We can solve these

independently, but it’s important to keep in our mind that the solutions must also obey the original Maxwell
equations. This will then give rise to a relationship between E and B. Let’s see how this works. We’ll start by
looking for a special class of solutions in which waves propagate in the x-direction and do not depend on y and
z. These are called plane-waves because, by construction, the fields E and B will be constant in the (y, z) plane
for fixed x and t. The Maxwell equation V - E = 0 tellsusthat we must have Ex constant in this case. Any constant
electric field can always be added as a solution to the Maxwell equations so, without loss of generality, we’ll

choose this constant to vanish. We look for solutions of the form
E = {0, E{x i)

where E satisfies the wave equation which is now,

The most general solution to the wave equation takes the form
Blaet)= Ftx — )+ gtr 4 of)

Here f(x—ct) describes a wave profile which moves to the right with speed c. (Because, ast increases, x aso has
to increase to keep f constant). Meanwhile, g(x+ct) describes a wave profile moving to the left with the speed c.

The most important class of solutions of this kind are those which oscillate with a single frequency . Such
waves are called monochromatic. For now, we’ll focus on the right-moving waves and take the profile to be the
sine function. We have,

E = Esin [w (£ - 1)]

L

We usually write this as,

E = Epsin(kr — wt)
Wherek is the wave number,
Equations of this kind, expressing frequency in terms of wavenumber, are caled dispersion relations. Because
waves are so important in physics, there’s a whole bunch of associated quantities which we can define. They are:
* The quantity » is more properly called the angular frequency and is taken to be positive. The actual frequency
f = o/2n measures how often awave peak passes you by. But because we will only talk about o, we will be lazy
and just refer to this as frequency.
* The period of oscillationis T = 2w/w.
» The wavelength of the waveis A = 2n/k. Thisis the property of waves that
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you first learn about in kindergarten. The wavelength of visiblelight is between A ~ 3.9 x 10 "mand 7 x 10" m.
Although we grow up thinking about wavelength, moving forward the wavenumber

k will turn out to be a more useful description of the wave.

* Eo isthe amplitude of the wave.

So far we have only solved for the electric field. To determine the magnetic field, weuse V = B = 0to tell us
that By is constant and we again set Bx = 0. We know that the other components By and B, must obey the wave
equation. But their behaviour is dictated by what the electric field is doing through the Maxwell equation V x E
=—0B/ot. Thistells us that,

B=1{00 F)

Eo

B = —smilkr =wit)

We see that the electric E and magnetic B fields oscillate in phase, but in orthogonal directions. And both oscillate

in directions which are orthogonal to the direction in which the wave travels

Because the Maxwell equations are linear, we’re allowed to add any number of solutions. This sometimes goes
by the name of the principle of superposition. This is a particularly important property in the context of light,
because it’s what allow light rays travelling in different directions to pass through each other. In other words, it’s
why we can see anything at all.

The linearity of the Maxwell equations aso encourages us to introduce some new notation which, at first sight,
looks rather strange.
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Thisis strange because the physical el ectric and magnetic fields should certainly bereal objects. Y ou should think

of them as simply the real parts of the expressions above. But the linearity of the Maxwell equations means both
real and imaginary parts of E and B solve the Maxwell equations. And, more importantly, if we start adding
complex E and B solutions, then the resulting real and imaginary pieces will also solve the Maxwell equations.
The advantage of this notation is simply that it’s typically easier to manipulate complex numbers than lots of cos
and sin formulae.

However, you should be aware that this notation comes with some danger: whenever you compute something
which isn’t linear in E and B — for example, the energy stored in the fields, which is a quadratic quantity — you
can’t use the complex notation above; you need to take the real part first.

1.14.3. Polarisation:

Above we have presented a particular solution to the wave equation. Let’s now look at the most general solution

with afixed frequency . This means that we look for solutions within the ansatz,

E:Ellls.Lh—-l. anil B:B”;s:kx—.»r:
where, for now, both EO and BO could be complex-valued vectors. (Again, we only get the physical electric and
magnetic fields by taking the real part of these equations). The vector k is called the wavevector. Its magnitude,
[k] = k, is the wavenumber and the direction of k pointsin the direction of propagation of the wave.

We get further constraints on Eo, Bo and k from the original Maxwell equations. These are,

V-E=0 = ik-Ez=10
V-B=1) — ik - ﬂu [l
VxE= _E =7 ik % Eg = 1wBy

i
1.14.3.1. Linear Polarisation
Suppose that we take Eo and Bo to be real. The first two equations above say that both Eo and Bo are orthogonal
to the direction of propagation. The last of the equations above says that Eo and B are also orthogonal to each
other. Y ou can check that the fourth Maxwell equation doesn’t lead to any further constraints. Using the dispersion

relation o = ck, the last constraint above can be written as,
1\-. X, 'E,-|| | = H“

This means that the three vectors "k, Eo/c and Bo form a right-handed orthogonal triad. Waves of this form are
said to be linearly polarised. The electric and magnetic fields oscillate in fixed directions, both of which are

transverse to the direction of propagation,
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1.14.3.2. Circular and Elliptic Polarisation
Suppose that we now take Eo and Bo to be complex. The actual electric and magnetic fields are consist of the real
parts, but now the polarisation does not point in afixed direction. To seethis, write,
Ey=o — 13

Thereal part of the electric field is then

E=acoslk-x—wit) + sk -x —wt)
with Maxwell equationsensuringthat o = k= - k =0. If welook at the direction of E at some fixed point in
space, say the origin x = 0, we see that it doesn’t point in a fixed direction. Instead, it rotates over time within the
plane spanned by o and B (which is the plane perpendicular to k).
A special case arises when the phase of Epis€™*, so that |o| = |, with the further restriction that oo = B =0. Then
the direction of E traces out acircle over time in the plane perpendicular to k. Thisis called circular polarisation.
The polarisation is said to be right-handed if p = "k x o and left-handed if = —"k .
Possible numerical problems:

1. Caculatethe electric potential at a distance of 0.2 meters from a point charge of 3uC.

2. Caculate the energy stored in a capacitor with a capacitance of 10uF when it is charged to a potential
difference of 50V.

3. A conductor of length 0.5 meters moves at a speed of 2m/s perpendicular to a magnetic field of strength
0.1T. Calculate the induced EMF in the conductor.

4. Calculatetheforce on a0.3 meter length of wire carrying acurrent of 5A in amagnetic field of 0.2T. The
wireis perpendicular to the magnetic field.

5. InanRC circuit, a 100 pF capacitor isinitially charged to 12 V and then allowed to discharge through a
200 Q resistor. Calculate the voltage across the capacitor after 5 seconds.

6. Consider aparalel plate capacitor whose plates are closely spaced. Let R be the radius of the plates and
the current in the wire connected to the platesis 5 A, cal cul ate the displacement current through the surface
passing between the plates by directly calculating the rate of change of flux of eectric field through the
surface.

7. A transmitter consists of LC circuit with an inductance of 1 uH and a capacitance of 1 uF. What is the
wavelength of the electromagnetic waves it emits?

8. Let an electromagnetic wave propagate along the x direction, the magnetic field oscillates at a frequency
of 1010 Hz and has an amplitude of 10—5T, acting along the y - direction. Then, compute the wavelength

of the wave. Also write down the expression for eectric field in this case.
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9. If therelative permeability and relative permittivity of the medium is 1.0 and 2.25, respectively. Find the
speed of the electromagnetic wave in this medium.

10. The relative magnetic permeability of the medium is 2.5 and the relative electrical permittivity of the
medium is 2.25. Compute the refractive index of the medium.

11. Compute the speed of the electromagnetic wave in a medium if the amplitude of electric and magnetic
fieldsare 3 x 104 N C-1 and 2 x 10-4 T, respectively.

12. Calculate the magnetic field inside a solenoid with 500 turns, a length of 0.2 meters, and a current of 2
amperes flowing through it.

13. Calculate the force on acharge of 3uC moving with avelocity of 2x10° m/s, perpendicular to a magnetic
field of 0.1T.

14. A rectangular loop with dimensions 0.2 meters by 0.3 meters rotates at 50 revolutions per second in a
uniform magnetic field of 0.4T. Calculate the maximum induced EMF in the loop.

15. Calculate the force per unit length between two parallel wires 0.1 meters apart, each carrying a current of

5 amperes in the same direction.
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Chapter 2
2.1. Introduction

Dielectrics are insulating or non-conducting ceramic materials and are used in many applications such as
capacitors, memories, sensors and actuators. Dielectrics are insulating materials that exhibit the property of
electrical polarization, thereby they modify the dielectric function of the vacuum. A dielectric materia is any
material that supports charge without conducting it to asignificant degree. In principleall insulators are dielectric,
although thecapacity to support charge varies greatly between different insulators. Although these materials do
not conduct electrical current when an electric field is applied, they are not inert to the electricfield. The field may
cause a dlight shift in the balance of charge within the material to form an electric dipole. Thus the materiasis
caled dielectric material.

Dielectric materials are used in many applications, from simple electrical insulation to sensors and circuit

components.

Faraday was carried out the first numerical measurements on the properties of insulating materials when placed
between the two parallel plates (capacitor), those materials, he called as dielectrics. He has found that the capacity
of a condenser was dependent on the nature of the material separating the conducting surface. This discovery
encouraged further empirical studies of insulating materials aiming at maximizing the amount of charge that can
be stored by a capacitor. In search of suitable dielectric materials for specific applications, these materials have
become increasingly concerned with the detailed physical mechanism governing the behavior of these materials.

The difference between dielectric material and insulator depends on its application.Insulating materials are used
to resist flow of current through it, on the other hand dielectric materials are used to store electrical energy. In
contrast to the insulation aspect, the dielectric phenomena have become more general and fundamental, as it has

the origin with the dielectric polarization.
2.2. Electric dipoles:

Upon application of adc or static electric field, there is a long range migration of charges.However, there is a
limited movement of charges leading to the formation of charge dipoles and the material, in this state, is
considered as polarized. These dipoles are aligned in the direction of the applied field. The net effect is called
Polarization of the material. A dielectric supports charge by acquiring a polarisation in an electric field, whereby
one surface develops anet positive charge while the opposite surface devel ops anet negative charge. Thisis made
possible by the presence of electric dipoles — two opposite charges separated by a certain distance — on a

microscopic scale.

56 | Page




1. If two discrete charged particles of opposite charges are separated by a certain distance, adipole

moment p arises.

g N =g N
i;' } :' |

p=qr

2. If the centre of positive charge within a given region and the centre of negative charge within the same
region are not in the same position, a dipole moment p arises. For example, in the diagram below the
centre of positive charge from the 8 cations shown is a X, while the centre of negative charge is located

some distance away on the anion.

*T . = anion
charge +q

centred here

n=gqr
The second view of dipole moment is more useful, since it can be applied over a large areacontaining many
charges in order to find the net dipole moment of the material. The dipoles can be aligned as well as be induced

by the applied field.

Note that in the equation for dipole moment, r is a vector (the sign convention is that r pointsfrom negative to

positive charge) therefore the dipole moment p is also a vector

2.3. Electric field intensity or electric field strength (E)

The force experienced by a unit test charge is known as electric field strength E

Q

4mgyr?

where g, isthe permittivity or dielectric constant of the medium in which electric charge is placed.

For vacuum g, = = 8.854 X 10" ?Fm'?
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2.4. Electric flux density or electric displacement vector ( D)
Theéelectric flux density or electric displacement vector isthe number of flux lines crossing

normal to aunit surface area. The electric flux density at a distance from the point charge Q is

then from above two equations D =¢E

2.5. Dielectric constant (sr)
Thedielectric constant of amaterial isdefined astheratio of the permittivity of the medium
(e) to the permittivity of free space (o). It can aso defined as the ratio of the capacitance with
dielectric (Cq) and with air ( Ca) between the plates.

2.6. Capacitance:
The property of a conductor or system of conductor that describes its abilityto store electric

charge.

C=q/V=Ae/d where
C is capacitance of capacitor
g is charge on the capacitor plate
V ispotential difference between plates
A isarea of capacitor plate
€ is permittivity of medium,
d is distance between capacitor plates
Units: Farad .

2.7. Polarization
When an electric field is applied to amaterial with dielectrics, the positive charges are displaced opposite to

the direction of the field and negative charges displaced in the direction of the field. The displacement of
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these two charges create alocal dipole, creation of dipole by applying electric field is called as polarization
Polarization is defined as induced dipole moment per unit volume.

_ u
volume

2.8. Polarizability
The polarization P is directly proportional to the electric field strength E
Pa E
P=aF

Where o proportionality is constant called as polarisability. The polarisability is defined as
polarization per unit applied electric field. If the material contains N number of dipoles per unit

volume then

P=Na

2.8.1. Relation between polarization and dielectric constant

| | . ]
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FParallel piate condansor with

dielectrics

Pavailel plate condensor without
diefectvics

Let us apply Gauss theorem for parallel plate condenser.

i
[Edda=2L
B =3
P4 &
W= E
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Let adielectric slab placed between two plates. Due to polarization, charges appear on the two faces
of the dlab, and establish yet another field within the dielectric media. Let this field be E'. The

direction of E’ will be opposite to that of Eo.
Theresultant field E in the material can be written as,
E=Eo-F
If opis the charge/unit area on the inserted dielectric slab surfaces, then by following first

equation, we write,

e ¢ &,
E=-9_-"¢
e, &
o S
F=——-——
£a Ea
s E=oc-o

Since the magnitude of polarization P = dipole moment/ Unit VVolume
But dipole moment = induced charge X distance

Therefore
P = induced charge/ Area= o,

We know that electric displacement

field or electric flux density D is given by charge /unit areaD = g/A= o

Therefore, it becomes

s, E=D-P

FP=D—Es,

in free space where there is no dielectric P=0
D= Eg,

But in dielectric mediathe D changes. From electrostatics
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D=¢g E
From equation of P,

P=Fs e —Eg,

; P
l&, —1)= =X
Eg,

4

Where y iselectric susceptibility of the dielectric medium. It doesn’t have any units.Since P

and E are vectors can be written as,

P=Ez (z -1)
This equation represents polarization vector.

2.8.2. Types of polarization
Dielectric polarization isthe displacement of charge particleswith the applied electric field.
The displacement of electric charges resultsin formation of electric dipole moment in atoms, ions
or molecules of the material. There are four different types of polarization, they are listed below.
a. Electric polarization,
b. lonic polarization,
c. Orientation polarization
d. Space charge polarization
2.8.2.1. Electric polarization
The displacement of the positively charged nucleus and the negatively charged electrons
of an atom in opposite directions, on application of an electric field, result in eectronic

polarization.

On applying a field, the electron cloud around the nucleus shifts towards the positive end of the
field. As the nucleus and electron cloud are separated by a distance, dipole moment is created
within each atom. The extent of this shift is proportional to the field strength.

Induced dipole moment
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= E

Ho=a, b

L

Where ae is called electronic polarizability. The dipole moment per unit volumeis called

electronic polarization.

2.8.2.2. Calculation of eectronic polarizability:
Electronic polarization can be explained by classical model of an atom in gasses. In gases the
atoms are assumed that the interaction among the atoms is negligible. Here the nucleus of charge

Ze is surrounded by an electron cloud of charge —Ze distributed in the sphere of radius R.

Le

S
(43 =R

Charge density,

When an electric field E is applied, the nucleus and electrons experience Lorentz force of
magnitude ZeE in opposite direction. Therefore the nucleus and el ectrons are pulled apart. As they
are pulled apart a Coulomb force develops between them. At equilibrium these two forces are

equal and nucleus and electron cloud are separated by a small distance x.

» Itincreases with increase of volume of the atom.

» Thiskind of polarization is mostly exhibited in monoatomic gases.(e.g. He, Ne, Ar, K,
Xeetc..)

» Itisindependent of temperature.

> It occursonly at optical frequencies (10°Hz)
> Vadt fast process: 10°~1026s,

Winh out electric fieid Wirk elvetric fleld
( —p Nuzcleus
¥
——

churge cenlvr af
eloctrons
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= ex”
R
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Hence Coulomb force is = —2° - X "'F"'I. s 2 W '1|
dme,x R 47, R
At equilibrium Lorentz force = Coulomb force
Zle'x
—feE =— ;
e, R
dme R'E
X=——

Le
The displacement of the electron cloud is proportional to applied electric field
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2.8.2.3. lonic Polarization
lonic polarization occursinionic solids such asNaCl, KBr, and LiBr. When an electric

field isapplied to anionic solid the positive and negative ions displace to their respectivepolarities

creating an electric dipolethisis called asionic polarization.

In the absence of an electric field there is no displacement of ions. When an electric field is applied
an induceddipole moment ;i is produced. Let x1 and x> be the displacement of positive and negative

ion respectively. Then the induced dipole moment.

. — GG e TG M

! A =elx, +x.)
Py = Let F be restoring force F
' . cl
e - x,
x, = x, “: X
= B.x;
= .1,

From mechanics the spring constant of mass attached to a spring is given by eE =m®?2x

At equilibrium the Lorentz force = restoring force

aF = r:l:lr-_.ll_;'l.'

ek eE eE
Therefore x'= Thenn r =— ¥, =——s
i T B, Moy,

peo & | T R
Wheme o, =— - i5 called as 1om¢ polansabihty
o | m M
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2.8.2.4. Orientation Polarization

Orientation polarization occurs only in polar molecules (the molecules which have
permanent dipole moment eg H>O, Phenol, etc.). When an electric field is applied to a polar
molecule, the dipoles experience atorque and try to align parallel to the applied field.

F Consider a polar molecule subjected to an
@ a electric field E. The alignment of electric dipole
E

with the electric field is similar to the aignment

of magnetic dipolewith the applied magnetic field
F e e in paramagnetic material.

The expression for polarization can be obtained
from the theory of paramagnetism.

The onentation polanzation s @ven as
Nu'E

P
KT

o, E

: [l i A
Where e, = _-;T 15 called as onentation polansabaliry
4

2.8.2.5. Space Char ge Polarization:

Space charge polarization occurs due to the accumulation of charges at the electrodes or atinterfacesin a
multiphase materias. In the presence of an applied field, the mobile positive ions and negative ions migrate
toward the negative electrode and positive el ectrode respectively to an appreciable distance giving rise to
redistribution of charges , but they remain remainsin the dielectric material (electrodeis blocking). The
space charge polarization can be defined as the redistribution of charges due to the applied electric field and
the charges accumulate on the surface of the electrodes. It occurs when the rate of charge accumulation is
different from rate of charge removal. Space charge polarization is not significant in most of the dielectric

materials.
Eloctoode Elecirode
‘ Dickectric £
N |
° o4l MCo +_ o
oFeCte % g‘o+-'+ o
g VOoT4-
o G °
A o) e *- o
Finxl lh.‘\l ve ~I -"’ \counvdated .‘l.:n?-:
Mobi ke charge v
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2.9. Internal field in liquids and solids (one dimensional)

In gases state the atoms are separated by large distances and the interaction between the atoms can
be neglected. When an externa electric field E is applied, the intensity of the electric field
experienced by an atom in gases state will be equal to the applied electric field E.

In solids and liquids, the atoms are close to each other |eading to strong interaction between them.
In solids and liquids the intensity of the electric field at a given point of the materia is not equal
to the applied electric field but equal to internal field which isthe sum of applied electric field and
field due to other dipoles present in the material.

Interna fidd Ei=E+E’

Theinterna field can be calculated by Epstein model in the case of one dimensional atomic array.
2.10. Electric field along the axis of an electric dipole
Consider an electric dipole of length 2d and charge Q, the field along the axis of the
dipole at point A isthe sum of the electric field dueto +Q and —Q.

" ; !
-0 +Q e eleciric feld due o HQ) al point Ads £" = ————
— g = A bae {x d)
o——O o
k X > Ches ) - 0
‘ e x-td — The eleciric field due to +Q at poimt A5 £ = =
x+d dome (x +d)

Electric field of dipole at A is,

i | L
e = = |
' Aze | lx=d)y (x+dY
20 2
daw_ | (x—dY (x+d) |
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SICE X d (x=d]" = (x+dr = x5 then

20 | 2de | 40
dme | x| dmxt
'I.r
since 2d0) =1y E,=—

4 1

Consider an array of one dimensional atoms along x- axis. The all the atoms are similar, equally spaced
and have induced electric dipole moment p; in an applied electric field E. The electric field experienced at

the A isthe sum of electric fields of other dipoles and applied electric field E.

OOOOOOO

|"r2§' e JA 2x%|

The electric field atA dueto the induced dipole B and L which are at adistance x is

Theelectric field at A dueto the induced dipole C and M which are at adistance 2x is

:
E.=E, = .
d1e_(2x)°

Therefore the field due to other dipolesis

E’ =.E_|5 L3 E}_*-E{"'E_u_: E_,l}+£_~,'+....
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2, 2 24 2p,

E'= ] 3 3 g s ]
dms x” Amext dme,(2x) 4mz,(2x) 4das (3xY 4as,(3x)
£.=_4,ﬂ:_,_¥+ 4, % e, =3
dms x"  dme (2x) 4w, (3x)
.ot [ 1 1 1 ] X B
.t- - ,I'_ ; | | :| | .._I. |..-..I. L ._:..| i ‘I‘rl.-.ll:l_'l! ] i e L — ...[ + — =|_
aE. x| 2 I ] R SO O o
= 1.2
':Eﬂm"
Thereforetheinterna field E,
1.2 4
B = —
mE X

The local field in athree dimensional solid is similar the above equation the number density N of

atoms replaces 1/a. Since Nwi=P and 1.2/x is replaced by y. Then the internal fieldis,

AT By L
_I._. n }’_'—i'_"r t’-i
s, s £

e =

F.=F

y depends on theinternal structure For a cubic symmetry crystal y value isl/3

P
E=E+ —
3¢,

Thefield given by the above equation is called Lorentz field.
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2.11. Clausius - M osotti equation

Let us consider elemental solid dielectric which exhibits only electronic polarization. If

ae isthe electronic polarisability per atom, it isrelated to the bulk polarization P through the
relation

P=No E

_|”
&, =——
* NE

Where N is the number of atoms per unit volume and E; is the local field using the relation above

P

o, = =
NI E+-

38

[

By using the relation between the polarization and permittivity we have

P=Ec. (s —1)
P
S A
et —1)
By Substituting ,
_F\-
|"|'r - wa =
N A
EahE § IE

£y 1 | | £ +2 |
{(s.—0I} 3 | 3=, —1) |

The above equation is known as Clausius Mosotti equation which isvalid

for nonpolar solids

€, -1 Na,

g, +2 3¢,
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2.12. Dielectricloss:
Dielectric lossis the dissipation of energy through the movement of charges in an alternatingel ectromagnetic

field as polarisation switches direction.

An efficient dielectric supports avarying charge with minimal dissipation of energy in the formof heet is
called dielectric loss. There are two main forms of loss that may dissipate energy within adielectric.

In conduction loss, aflow of charge through the material causes energy dissipation.

Dielectric lossis especially high around the relaxation or resonance frequencies of the polarisation mechanisns
as the polarisation lags behind the applied field, causing an interaction between the field

and the dielectric’s polarisation that resultsin heating. Thisisillustrated by thediagram below (recall that the
dielectric constant drops as each polarisation mechanism becomesunable to keep up with the switching
electric field.)

Dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy into,

e.g., heat.
It can be represented in terms |oss tangent tan 6 and is defined:
EH
tand, = —
£

2.12.1. Dielectric Breakdown : The dielectric breakdown is the sudden change in state of a dielectric material
subjected to avery high electric field , under the influence of which , theelectrons are lifted into the
conduction band causing a surge of current , and the ability of the material to resist the current flow suffers a
breakdown .

Or

When a dielectric material losesitsresistivity and permits very large current to flow through it,then the
phenomenon is called dielectric breakdown

Or

At high electric fields, amaterial that is normally an electrical insulator may begin to conductelectricity —

I.e. it ceasesto act as adielectric. This phenomenon is known as dielectric breakdown.
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2.12.2. Frequency dependenceof polarizability:
On application of an electric field, polarization process occurs as a function of time. The polarization P(t)

as afunction of time. The polarization P(t) as afunction of timet is given by
Pity=P[ l-exp(-t/t )]

Where P — max. Polarization attained on prolonged application of staticfield. t; relaxation time for particular
polarization process
Therelaxation time tr isameasure of the time scale of polarization process. It isthe time taken for a

polarization process to reach 0.63 of the max. value.

Electronic polarization is extremely rapid. Even when the frequency of the applied voltageis very highin the
optical range (=10%° Hz), electronic polarization occurs during every cycle of the applied voltage.

lonic polarization is due to displacement of ions over asmall distance due tothe applied field. Sinceions are
heavier than electron cloud, the time taken for displacement is larger. The frequency with which ions are
displaced is of the same order as the lattice vibration frequency (=1013Hz). Hence, at optical frequencies,
thereisno ionic polarization. If the frequency of the applied voltage is less than 1013 Hz, the ions respond.
Orientation polarization is even slower than ionic polarization. The relaxation time fororientation polarization
inaliquidislessthan that in asolid. Orientation polarization occurs, when the frequency of applied voltage
isinaudio range (1010 Hz).

Space charge polarization is the slowest process, asit involves the diffusion of ionsover several interatomic
distances. The relaxation time for this process is related tofrequency of ions under the influence of applied

field. Space charge polarization occurs at power frequencies (50-60 Hz).
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2.12.3. Frequency Dependence of dielectric constant

When a dielectric material is subjected to an alternating field, the polarization component
required to follow the field in order to contribute to the total polarization of the dielectrics. The
relative permittivity which is a measure of the polarization also depends on the frequency. The

dependence of [1; on frequency of the electric field is shown in the figure.

s A
Interface .
Tonic
Electronic
Griemé:atiun /-—/\
1 : i Avj
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p 12w

At very low frequency, the dipoles will get sufficient time to orient themselves completely with

the field and all types of polarization exist. Since the dielectric is characterized by polarisability

OO = 0 T 0L T Ca g |ow frequency i.e at radiofrequency region the dielectricconstant will be

dueto al polarisability.

The orientation polarization, which is effective at low frequencies, isdamped out for higher
frequencies. In the microwave region the dipoles fail to follow the field and the polarisability

reducesto (o = ae+ 0i), asaresult & decreases to some amount.

In the IR region the ionic polarization fails to follow the field so the contribution of ionic
polarization dies away. In this region only electronic polarization contributes to the total

polarization. Therefore (a= ae) the & still decreases and only electronic polarization exist.

We know that - ;
P=Nal=cl{c —1)E

Then, the relative permittivity is,
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In the ultraviolet region even the electron cloud could not follow the field and electronic

polarizability becomes almost zero and the permittivity becomes one.

[, ) =1

For example at low frequency the dielecric constant of water at room temperature is

about 80, but it fall to about 1.8 in the optical region.

2.12.4. Frequency Dependence of dielectric loss:

Dielectriclosstendsto be higher in materialswith higher diel ectric constants. Thisisthe downside
of using these materials in practical applications. Dielectric loss is utilised to heat foodin a
microwave oven: the frequency of the microwaves used is close to the relaxation frequency of the
orientational polarisation mechanism in water, meaning that any water present absorbs a lot of
energy that isthen dissipated as heat. The exact frequency used isslightly away from the frequency
at which maximum dielectric loss occurs in water to ensure that the microwaves are not all
absorbed by the first layer of water they encounter, therefore allowing more even heating of the

food.

& dielectric constant

dielectric loss
1o 101 101

Frequency /Hz
2.13. Ferrodlectrics

Below certain temperatureit isfound that some materials spontaneously acquire an electric
dipolemoment. These materials are caled as ferroelectric materials or ferroelectrics.The
temperature at which ferroelectric property of the material disappears is called as ferroelectric

Curie temperature.

Ferroelectric materials are anisotropic crystals which exhibit a hysteresis curve P versusE
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which can be explained by domain hypothesis.

Ferro electricity: Ferro electric materials are an important group not only
because ofintrinsic Ferro electric property, but because many possess useful

piezo electric, birefringent and electro optical properties.

The intrinsic Ferro electric property is the possibility of reversal or change of

orientation

of the polarization direction by an electric field. This leads to hysteresisin the

polarization P, electric field E relation , similar to magnetic hysteresis. Above a critica

temperature, the Curie point T¢, the spontaneous polarization is destroyed by thermal

disorder.The permittivity shows a characteristic peak at Te.

ikl

Piezo — Electric Materialsand Their Applications. Single crystal of quartz is used
for filter, resonator and delay line applications. Natural quartz is now being replaced

by syntheticmaterial.

Rochelle salt is used as transducer in gramophone pickups, ear phones,

hearing aids, microphones etc. the commercial ceramic materials are based on barium titanate,

lead zirconate and |ead titanate. They are used for high voltage generation (gas lighters),

accelerometers, transducers etc. Piezo e ectric semiconductors such as GaS, ZnO & CdS are

used as amplifiers of ultrasonic waves.

2.14. Appl

ications of Dielectric Materials:

Almost any type of electrica equipment employs dielectric materials in some form or another.

Wires and cables that carry electrical current, for example, are always coated or wrapped with

some type of insulating (dielectric) material. Sophisticated el ectronic equipment such asrectifiers,
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semiconductors, transducers, and amplifiers contain or are fabricated from dielectric materials.
The insulating material sandwiched between two conducting plates in a capacitor is also made of
some dielectric substance.

Liquid dielectrics are also employed as electrical insulators. For example, transformer oil is a
natural or synthetic substance (mineral oil, silicone oil, or organic esters, for example) that has

the ability to insulate the coils of atransformer both electrically and thermally.

2.14.1. Capacitors

Electric
fleld E

3
Flate separation d

Commercially manufactured capacitors typically use a solid dielectric material with high
permittivity as the intervening medium between the stored positive and negative charges. This

material is often referred to in technical contexts as the capacitor dielectric.

The most obvious advantage to using such adielectric material isthat it prevents the conducting
plates, on which the charges are stored, from coming into direct electrical contact. More

significantly, however, a high permittivity allows a greater stored charge at a given voltage. This

v
0. =&—

d

can be seen by treating the case of a linear dielectric with permittivity € and thickness  between

two conducting plates with uniform charge density .. In this case the charge density is given by

and the capacitance per unit area by

9

o= ~ —

F

Bl
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From this, it can easily be seen that alarger € leads to greater charge stored and thusgreater

capacitance.
Dielectric materials used for capacitors are also chosen such that they are resistant to ionization. Thisallows
the capacitor to operate at higher voltages before the insul atingdiel ectric ionizes and begins to allow

undesirable current.

2.14.2. Dielectric resonator

A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the
polarization response for a narrow range of frequencies, generaly in the microwave band. It
consists of a"puck" of ceramic that has alarge dielectric constant and a low dissipation factor.
Such resonators are often used to provide a frequency reference in an oscillator circuit.
Anunshielded dielectric resonator can be used as a Dielectric Resonator Antenna (DRA).

2.14.3. Insulators-
Required Qualities of Good Insulating Materials: The required qualities can beclassified
as under electrical, mechanical, thermal and chemical applications.

2.14.4. Electrical:
1. electrically the insulating material should have high electricalresistivity and high
dielectric strength to withstand high voltage.
2 .The dielectric losses must be minimum.
3. Liquid and gaseous insulators are used as coolants. For example transformer oil, Hydrogen and helium are
2.14.5. Mechanical:
1. insulating materials should have certain mechanical propertiesdepending on the use to
which they are put.
2. When used for el ectric machine insulation, theinsulator should have sufficientmechanical
strength to withstand vibration.
2.14.6. Thermal:
Good heat conducting property is also desirable in such cases. Theinsulators
should have small thermal expansion and it should be non-ignitable.
2.14.7. Chemical:
1. chemically, the insulators should be resistant to ails, liquids, gasfumes, acids and

alkali’s.
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2. The insulators should be water proof since water lowers the insul ation
resistance and the dielectric strength.
2.14.8. Other Applications:

Solid dielectrics are perhaps the most commonly used dielectrics in electrical engineering, as
very good insulators. Some examples include porcelain, glass, and most plastics.
Air, nitrogen and sulfur hexafluoride are the three most commonly used gaseous dielectrics.

Industrial coatings such as parylene provide a dielectric barrier between the substrate and its

environment.

Minera oil is used extensively inside electrical transformers as afluid dielectric and to assist in
cooling. Dielectric fluids with higher dielectric constants, such as electrical grade castor oil, are

often used in high voltage capacitors to help prevent corona discharge and increase capacitance.

Because dielectrics resist the flow of electricity, the surface of adielectric may

retain stranded excess electrical charges. This may occur accidentally when the dielectricis
rubbed (the triboelectric effect). This can be useful, asin aVan de Graaff

generator or electrophorus, or it can be potentially destructive as in the case of electrostatic

discharge.

Piezoelectric materials are another class of very useful dielectrics which are used for transducers
and sensors.
Ferroel ectric materials often have very high diel ectric constants, making them quite

useful forcapacitors.
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2.15. Magnetic Materials

Classification of dia, para and ferromagnetic materials. Curie Temperature Hysterisisin
ferromagnetic materials. Soft and Hard magnetic materials. Applications.

I ntroduction

The materials that can be magnetised are called as magnetic materials

e Magnetic dipoles and magnetic dipole moment
Any two opposite poles separated by distance constitute an magnetic dipole. A magnet is
a dipole which has north pole and south pole and the Iength of the magnet is the distance of

separation.
Magnetic dipole moment is the product of magnetic pole strength (m) and length of the magnet(l)

e Magneticfield intensity (H)
HUm = ml
The force experienced by a unit north pole ( of strength 1 Wb) placed at apoint in
amagnetic field isameasure of the' field intensity’ or “field strength’
e Magnetisation or Intensity of magnetisation (M)

M agnetization may be defined as the process of converting anon magnetic bar into a

magnetic bar
e Magnetic Induction Or Flux Density(B)
Magnetic induction or magnetic flux density in an any material is the number of

lines of magnetic force passing through unit area perpendicular . Wbh/m?

o
B = —-! = s, (M + H)
o Magnetic Susceptibility (x) '
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Theratio of the magnetization to the field strength

_M
X__

H

e Permeability (pn)
The ration of the amount of magnetic density B to the applied magnetic field . It is used

to measure magnetic lines of forces passing through the material

l’l:_
H

» Origin of Magnetic moment — Bohr Magneton
When ever acharged particle has an angular momentum, it contributesto permanent dipole
moment. Consider an hydrogen atom, electron revolving around the nucleus is equal to a current
loop. Orbital angular momentum arises due this current loop. The electron spin angular momentum

and nuclear spin angular momentum arises due to spin of the electron and nucleus respectively.

There are three angular momentum of an atom
1. Orbital angular momentum of the electron
2. Electron spin angular momentum
3. Nuclear spin angular momentum
Total angular magnetic momentum

Bohr Magneton:
The orbital angular momentum of an electron in an atom can be expressed in terms of

atomic unit of magnetic moment called Bohr Magneton.

E"'Jri"

Ly =

Ll

dmn
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2.16. Classification of the magnetic materials

The magnetic materials are broadly classified in to two types. They are 1. Those atoms or
molecules do not have permanent dipole moments and 2. Those atoms or molecules have
permanent dipole moments even in the absence of external magnetic field.

Based on the magnetic moments the materials are classified as

Diamagnetic materials
Paramagnetic materials
Ferromagnetic materials
Anti ferromagnetic materials
Ferri magnetic material

2.16.1. Diamagnetic materials
Dia magnetic materials has completely filled sub shell electronic structure resultant
magnetic moment is zero. There are no permanent dipoles and hence the magnetic effect are small.
When a diamagnetic material is placed in amagnetic field, there will be a small induced magnetic
moment which always oppose the applied field(accordance with Lenz's Law). Due to this effect
the magnetic lines of forces expelled from the materials.
Mostly the covaent and ionic crystals exhibits the diamagnetic
properties. The magnetic susceptibility is small and negative and is

independent of temperature. revioe
The examples of diamagnetic materials are 1. Covalent materials

such as Si,Ge, diamond, ii) some metals such as copper, silver, gold.

2.16.2. Para magnetic materials.

Atoms or molecules of paramagnetic materials have permanent magnetic moment oriented
in random direction. The magnetic interaction between the dipoles try to align themselves but the
thermal agitation disturb the alignment. In paramagnetic materials vector sum of magnetic
moments is zero in the absence of field. When an external magnetic field is applied the partial

alignment of permanent atomic magnetic moments occur
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When a magnetic field is applied , the individual magnetic moment takes the alignment along the
applied field as shown in figure . The magnetization of a paramagnetic material increases with the
increase in the applied field. Increase in temperature it reduces the magnetization and destroys the
alignment of dipoleswith applied field.

H%.
o o $ u w e g7 & e & o>
$ e LY & e> o e
AP S N, w6 W W Nes g

Consider aparamagnetic material placed in non-uniform magnetic field. The paramagnetic
materials experience a net magnetic force towards the greater field. The magnetic susceptibility is
small and positive and is dependent on temperature. The susceptibility of the magnetic field is
given by

<
X=T

Where C isthe curie temperature and T isthe temperaturein Kelvin scale.
The magnetization in ferromagnetic material islinear and gets saturated when alarge magnetic
field is applied at low temperature.

The examples of paramagnetic materials are Mg, gaseous and liquid oxygen ,

ferromagnetic material ( Fe), and anti-ferromagnetic materials at high temperature and

ferromagnetic material (Fe304) at high temperature.
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2.16.3. Ferromagnetic materials

Atoms or molecules of ferromagnetic

materials have permanent

magnetic moment. In ferromagnetic materials al the dipoles are aligned

paralel as shown in the figure if asmall value of magnetic field is applied,

alarge value of magnetization is produced. As

the ferromagnetic material

have permanent magnetic dipole moment and the susceptibility is positive.

The magnetization in ferromagnetic material isnon linear and gets saturated

when alarge magnetic field is applied.

A ferromagnetic materials exhibits two different properties. It behaves as a ferromagnetic

material below a certain temperature known as ferromagnetic curie temperature. Above the

temperature it behaves as a paramagnetic material. In the ferromagnetic region, it exhibits well

known curve known as hysteresis curve as shown in the figure.

The susceptibility of a ferromagnetic material above the ferromagnetic curie temperature

isgiven by

C

= r-a8,

Where C isthe Curie constant and 6r is the ferromagnetic Curie temperature. The transition and rare

earth metals such as Fe ,Co, Ni ,Gd are the examples of ferromagnetic materials.

g
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=
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2.16.4. Hysteresisin ferromagnetic materials (B-H curve)

Below the ferromagnetic Curie temperature (T < 6¢ ) Ferromagnetic material exhibitsawell
known curve called hysteresis curve. The variation of B( magnetic induction) with H(applied
field) can be represented by a closed curve called hysteresis loop or curve. This refers lagging of
magnetization behind the magnetising field. If a magnetic field is increased gradually, the flux
density increases and it becomes maximum. The maximum value of flux density is called saturated
magnetization.If the field is reversed, the ferromagnetic materials is found to have magnetization
in the absence opf external field. Thisis called as retentivity or remanent magnetization (Br) and
this property is called as spontaneous magnetization. If thefield is further reduced the flux density
reduces to zero. The field requird in the opposite direction to bring magnetization to zerois called
as coercive field orcoercivity (-Hg). If thefield isincreased in oposite direction it attains saturation

magnetization. Ifan alternating field is applied a closed loop as shown in the figure is obtained.

- . —_
Conmee
Forco

According to Weiss, a virgin specimen of ferromagnetic material consist of number of regions or
domains(=10° m or above) which are spontaneously magnetized. When magnetic field is not applied
the direction of spontaneous magnetization varies from domain to domain. The resultant
magnetization may hence be zero or nearly zero.

These domains are separated from other by awall known as domain wall or Bloch wall The domain
concept is used to explain the hysteresis property. When an externa field is applied two possible
ways of alignment domain growth are possible one by domain wall motion and other byrotation of

domain wall and domain growth is also reversible. Hysteresis curveis explained by domain concept.
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e Antiferromagnetic matériels: These arethe ferromagnetic materialsin which equal no
of opposite spins with same magnitude such that the orientation of neighbouring spinsis
inantiparalel manner are present.

Susceptibility is small and positive and it isinversely proportional to the temperature.

y=C /(T+0)
the temperature at which anti ferromagnetic material converts into paramagnetic materia is
known as Neel’s temperature.
Examples: FeO, Cr20s.

e Ferrimagnetic materials: These are the ferromagnetic materials in which equal no of
opposite spins with different magnitudes such that the orientation of neighbouring spins
isin antiparallel manner are present.

Susceptibility positive and large, it isinversely proportional to temperature
y=C /(T £0) T>Tn (Neel’stemperature) Examples: ZnFeO4, Cu
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2.16.5. Soft and Hard magnetic materials

e Soft magnetic materials
The magnetic materialsthat are easy to magnetize and demagnetize are called as soft
magneticmaterials.

Properties:
t
B
1. Low remanent magnetization = /
- N —
2. Low coercivity
3. Low hysteresis energy loss ’
4. Low eddy current loss ) |
5. ngh permeablllty HYSTERFI[S {IRMF Fotf moeT
. o MAGRETTC MATER[AL
6. High susceptibility

Examples of soft magnetic materials are

i) Permalloys ( aloys of Fe and Ni)

i) S — Fealoy

1)) Amorphous ferrous alloys ( dloys of Fe, Si, and B)
iv) Pure Iron (BCC structure)

Applications of soft magnetic materials: Mainly used in electro- magnetic machinery and

transformer cores. They are also used in switching circuits, microwave isolators and matrix

storage of computers.
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e Hard magnetic materials

The magnetic materialsthat are difficult to magnetize and demagnetize are called as hardmagnetic

materials.

Properties:

7.

o ok~ W DN PF

High remanent magnetization

High coercivity

High saturation flux density

Low initial permeability

High hysteresis energy loss

High permeability

The eddy current lossislow for ceramic type and large for metallic type.

Examples of hard magnetic materialsare, i) Iron- nickel- aluminum alloys with certain amount
of cobalt called Alnico aloy. ii) Copper nickel iron aloys. iii) Platinum cobalt aloy.

Applications of hard magnetic materials: For production of permanent magnets, used in magnetic

detectors, microphones, flux meters, voltage regulators, damping devices and magnetic

separators.
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Hard magnetic materials

Soft magnetic materias

Difficult to magnetize and demagnetize

Easy to magnetize and demagnetize

large hysteresisloop area

small hysteresis|oop area

Have large hysteresis |oss

Have very low hysteresis |oss

The domain wall movement isdifficult anditis

irreversiblein nature

Domain wall movement is relatively easier.
Even for small change in the magnetizing

field ,magnetization changes by large amount

The coercivity and retentivity arelarge

The coercivity and retentivity are small

Magnetostatic energy islarge

Magnetostatic energy is small.

Small values of permeability and susceptibility

Large vaues of permeability and

[ron-nickel-aluminium alloys (anicol)

Copper nickel iron (cunife)

susceptibility
Used to make permanent magnets Used to make el ectromagnet
Examples- Examples-

Fe-Si , Ferrous nickel aloys

Ferrites,Garnets
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Possible Numerical Questions:

1. Find the capacitance of alayer of Al,Ogthat is 0.5 m thick and 2000 mm? of square area

o a0 &~ W

7.

(e =8.854 x 102 Fm?)
A layer of porcelain is 80 mm long, 20 mm wide and 0.7 pm thick. Calculate its capacitance with
&e=6
If anionic crystal is subjected to an electric field of 1000 Vm and the resulting polarization
4.3 x 1078 cm?. Calculate the relative permittivity of NaCl. Solution:
Calculate the electronic Polarization of argon atom. Given at r = 1.0024 at NTPand N = 2.7 x 10%°
aomm=3.
A solid contains 5 x 10?8 atoms/m? each with a polarisability of 2x10*° F m?. Assuming that the
interna field is given by Lorentz formula. Calculate the ratio of internal field to the external field.
£0=8.854x 10 »Fm .,
Calculate the polarization produced in dielectric medium of dielectric constant 6 when it is subjected
to an electric field of 100 Vm-1. (g0 =8.854 x 10-12 Fm™?)
Calculate the electronic polarizability of neon. The radius of neon atom is 0.158 nm
The dielectric constant of ahelium gasat NTP is 1.0000684. Calculate the el ectron polarizability of
helium atoms if the gas contains 2.7 x 10% atoms/m® and hence cal cul ate the radius of helium

atom (= 8.854 x 10> Fm™?)

Model sample questions:
1
2.

What is dielectric material? Mention the uses of dielectric materials.

Definethefollowing terms (i) Dielectric Polarization, (ii) Polarisability, (iii) DielectricConstant,
(iv) Spontaneous polarization, (v) Electric susceptibility.

Establish the relation concerning D, E, and P.

What do you mean by Macroscopic and Microscopic field? What is Lorentz field?

Briefly discuss the polarization phenomenon in dielectric materials.

Explain briefly the term electronic, ionic and orientation polarization in dielectric system under
static electric field. Derive Langevin-Debye expression

What is relative dielectric constant? Derive the expression for the dielectric susceptibility.Briefly
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describe with the help of atomic model the dependence of relative dielectric constant (1) on the
electronic polarizability (ae).

8. Is the relative dielectric constant (¢ r) depends on the atomic size of dielectric materials? Explain.

9. What do you mean by orientational polarization? Discuss the temperature dependence of
orientational polarization.

10. Estimate the internal electric field strength with in the atoms of dielectric material, placedunder
external static electric field.

11. What is Clausius-Mosotti relation of dielectric constant? Develop the relation for elemental
dielectric systems.

12. Arranged in descending order the relative dielectric constant of following materials :
(@ LiCl (b) Ge (0 Diamond (d) Si

13. What should be the effect on relative dielectric constant of ionic solid materials, whenplaced
under optical radiation.

14. Short note: (a) dielectric strength, (b) dielectric loss, (c) Ferroeectricity, (d)
Piezoelectricity.

15. Give name of 3 each — Ferro and Piezo- electric materials. Also point out their mostimportant
usesin industry.

16. Discuss the frequency effect on dielectric value of material.

17. Discuss the frequency dependence of various contributions to dielectric polarizability.

18. Explain briefly the behavior of eectronic polarizability (ae) of dielectric material under
a.cfield application.

19. Compare the values of natural angular frequencies in (i) electronic polarization and (ii)ionic
polarization of dielectric material under a.c field application.

20. What do you mean by complex dielectric constant of material?

21. Write down the expressions of following parameters under static and a.c. field applicationof
dielectric materias: (&) Internal electric field (Ei)

(b) Electric dipole (P)
(c) Relative dielectric constant

22. What is dielectric loss? Define loss-tangent of dielectric.

23. Write down the equivalent circuit of aloss-dielectric capacitor.

24. What is dielectric strength? Compare the same in (a) mica, (b) fused silica (c) porcelain.Arrange
then in ascending order.
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25. What should be the nature of relative dielectric constant (¢ r) under A.C. field? How it isrelated
with the dielectric loss in the system?
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CHAPTER 3:

QUANTUM PHYSICS




Chapter - 3
In the late 19th and early 20th centuries Quantum theory emerged from a series of revolutionary
discoveries which pointed out the limitations of classical physics and devel oped the foundation for
understanding the behavior of matter and energy at atomic and subatomic scales. This chapter
deals with the key experiments and theoretical advances, that shaped the progress of quantum
mechanics.
3.1. Inadequacy of Classical Physics and the Requirement of Quantum Theory
Newtonian mechanics, Maxwell's electromagnetic theory, and thermodynamics are the key
components of Classical physics which can easily describe the macroscopic physical world.
However, with the progress and development of the modern science, several phenomena at the
atomic and subatomic realms found to be inexplicable in terms of classical physics. To overcome
these difficulties, the quantum theory was devel oped.
3.1.1 Blackbody Radiation and the Ultraviolet Catastrophe
According to the classical Rayleigh-Jeans law the energy density of blackbody radiation in the
range of wavelength A and A+dA is given by —

BakT
Ejdd = J._ldi

Which suggest that as 4 — 0, E; — oo that is in huge contrast with the experimentally obtained
result which suggeststhat A — 0, E; — 0. Thisinconsistency of experimental and theoretical result

is known as ultraviolet catastrophe.

\

Theoretical graph
i Il,fﬂ‘x clazsical enlenlation

Emissiviry
1
o

Wavelength { L) cm

Fig: The experimental curve and the theoretical graph obtained by Rayleigh — Jeans |aw.
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3.1.2 Photoelectric Effect
The gjection of electrons from a metallic surface due to incidence of electromagnetic radiation of

high frequency is termed as photoelectric effect.

oloeleciron:
Incident radiation i i

Y = -

£
N, L L

metallic sarfaee

Fig: Schematic diagram of photoelectric effect
Classical electromagnetic theory of light fails to explain why the incident of photoelectron
emission is instantaneous in nature as the classical theory predicts requirement of minimum time
for transfer of energy from incident photons to the atoms of the metal. Experimentally it has been
observed that the photocurrent is proportional to the intensity of the radiation and kinetic energy
of the emitted electrons is dependent upon the frequency of incident radiation. However, the
el ectromagnetic theory could not explain it clearly. Moreover, the classical theory failsto explain
the existence of athreshold frequency for a material to show photoelectric effect.
3.1.3 Stability of Atom
According to Rutherford’s model of atomic structure, negatively charged electrons are revolving
around the positively charged heavy nucleusin circular orbit. The classical el ectromagnetic theory
states that an accelerating charge particle will spontaneously emit energy. Therefore, with course
of time the electrons will lose energy and after a certain time will collapse into the nucleus. Thus,
the Rutherford’s model fails to ensure the stability of nucleus.
3.1.4 Absorption and Emission Spectra of Atoms
Classical theory predicts that the atoms emit or radiates energy continuously having all types of
wavelengths. However, discrete spectral lines have been observed in the emission and absorption
spectra of different atoms which indicates that only certain definite electronic transitions are
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possible and which further strengthen the fact that the classical physics is not sufficient for
calculation in atomic level.

3.1.5 Compton Effect

It was predicted by classical electromagnetic theory that the wavelength of a scattered X-ray by
electrons inside a material remains the same as the incident X-rays. Then Arthur Compton’s
experiments revealed that the wavelength of the scattered X -ray becomes longer compared to the
incident X-rays. It has also been observed that the increase of wavelength depends on the scattering
angle which indicates particle like behavior of X-ray. Classical theory failed to describeit.

3.1.6 Diffraction and Interference of Electrons

The famous double dlit experiment of electron shows the presence of interference pattern
indicating the wave nature of electron, while according to the classical theory electrons should
behave like particle and there will be two distinct band in the screen. This type of wave-particle
dual nature of electron was successfully explained by quantum theory.

Many similar types of examples are available in the history of physics where classical physics was
not sufficient to explain the phenomena and this inadequacy was successfully addressed by the

Quantum theory.

3.2. Black Body Radiation:

Blackbody is an idealized physical object which can absorb all the radiation incident upon it. The
black body radiation is function of its temperature and is characterized by a continuous spectrum
that varies with temperature. Some definitions which will be helpful for the study of black body
radiation are —

3.2.1 Emissive power (e):

The emissive power (e,) of an object at a particular temperature and wavelength is defined as the
total amount of energy emitted normally per unit surface area of the body per unit time within unit
range of wavelength.

3.2.2 Absor ptive power (au.):

Absorptive power isameasure of the ability of amaterial to absorb radiation incident upon it.
Absorptive power is defined as the ratio of the amount of energy absorbed by a body to the total

amount of incident radiation energy on the surface —

94| Page




4 = Qabsorbed
L=
Qincident

It isadimensionless quantity and its value ranges from 0 to 1.

3.2.3 Kirchhoff’s law of thermal radiation:

Kirchhoff's Law of Thermal Radiation statesthat for a given wavelength and temperature, theratio
of the emissive power of abody to its absorptive power is constant. Mathematically, it is expressed

as:

€,
— = constant
a,

For a perfect black body, the absorptive power is 1. Which suggests that for black body radiation
e, = constant

3.24 What isablack body?

A material which can absorb all the incident electromagnetic radiation irrespective of frequency
or angle of incidence and does not reflect or transmit any radiation is known as perfect black body.
It iswell known that a good absorber of radiation is also a good emitter which therefore suggests
that a perfect blackbody can emit radiation of all wavelength when it is heated.

bobiat Kadesme

Fig: Schematic Diagram of a Black Body
To successfully construct ablackbody one must be very careful to design the cavity and choicethe
materials to ensure high emissivity and minimum loss of energy. The schematic diagram of a
perfect black body has been shown in the above figure where an enclosure has been constructed
with a small opening in one side. The interior walls of the enclosure have been coated with a
material which will help minimizing reflections and maximize the absorption of incident radiation.
A radiation which enters the spherical enclosure suffers multiple number of reflectionsin theinner

surface of the walls and after a multiple number of reflections it completely get absorbed.
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3.2.5. Spectrum of black body radiation

The energy distribution spectrum of a blackbody is the graph between emissive power and
wavelength at a particular temperature.

Key Features of the Blackbody Radiation Spectrum:

i. The blackbody radiation spectrum is continuous and for a particular temperature, the emissive
power increases with the increase of wavelength and attains a maximum value for a particular
value of wavelength Am. On further increase of wavelength, the emissive power decreases rapidly.
ii. The intensity of radiation emitted by a blackbody peak at a specific wavelength (Amax), which
depends on the temperature of the blackbody. According to Wien's displacement law, the peak
wavelength isinversely proportional to the temperature.

iii. It has been observed experimentally that the wavelength for which the emissivity is maximum

at aparticular temperature shift towards|ower wavel ength region upon increase of the temperature.

T

emissive power

M2 da wavelength (L)

Fig: Variation of emissive power with the wavelength at different temperature (T1>T2>T3)
3.2.6. Wien's displacement law: In 1893, Wilhelm Wien proposed this law to understand the
relationship between the peak wavelength (Amax) Where the energy density of the blackbody
radiation is maximum and the corresponding temperature (T) of the blackbody. With a simple
mathematical expression this law successfully shows how the location of the maximum energy
density of the blackbody radiation shifts as the temperature is changed. If Amax IS the wavelength
at maximum energy distribution of ablack body radiation at a particular temperature (T), then —

AmaxT = constant
Thislaw suggests that the maximum energy density of the radiation emitted from ablack body get
shifted towards the lower wavelength region for the rise of the temperature (T) of the black body.
3.2.7. Theoretical explanation of Black body spectrum:
Initially scientists attempted to to explain blackbody radiation using classical electromagnetic

theory and statistical mechanics. Here initially two well-known classical models have been
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discussed which appears to describe the black body radiation spectrum partially. Next we have
discussed the famous Planck’s hypothesis and radiation law which clearly explain the
experimentally obtained blackbody spectrum throughout whole wavelength region.

3.2.7.1 Wien’s radiation formula:
In order to explain the observed blackbody spectrum, Wien first showed that the energy density

of radiation of wavelength A and A+dA from a black body of temperature T is —
A _B
EydA = yEd aTdA

Here, A and B are constant. This law explains the experimentally observed black body spectrum

for the low wavelength region. But for high wavelength region, the result is not satisfactory.

3.2.7.2 Rayleigh-Jeans L aw:
Lord Rayleigh and James Jeans used classical equipartition of energy theorem aong with the other
classical calculations to study the nature of black body radiation. They found, the energy density

of radiation in the wavelength range A and A+ dA from a black body at a temperature T is given by:
8mkT

/14-

EdA = dA

Few assumptions were considered by Lord Rayleigh and James Jeans in order to explain the
experimentally obtained spectrum of blackbody radiation. The assumptions are —

(1) The black body cavity is full of radiations of all frequencies starting from 0 to oo. The radiations
are composed of electromagnetic wave which gets reflected by the walls of the container forming
stationary waves.

(i1) The number of modes per unit volume of the cavity within the frequency range v and v+dv is
given by nvdv=8mvdv/c®, where c is the velocity of light in free space.

(iif) The average energy per degree of freedom is 1/2kT, where k is the Boltzmann constant (1.38
x 1022 JK) according to the Maxwell's law of equipartition of energy.

The electromagnetic standing wave inside the cavity of the black body can be considered aslinear
harmonic oscillator. Considering the kinetic and potential energy, the energy of each vibration will
be—
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Thus, the energy density (ie. the amount of radiant energy per unit volume) within the frequency

range v and v+dv is given by —

_ 8mv?
E,dv = é(n,dv) = kT = kTdv
Agan using,v = %; that is dv = |—A%dﬂ| so the above equation can be written in terms of
wavelength as —
8mkT
E)Ldl = A—4d/1

The Rayleigh-Jeans law explains the experimental result at high wavelength region but fails

completely for low wavelength region.

Ultraviolet catastrophe:

The ultraviolet catastrophe describes a problem that arosein classical physics at the end of the 19"
century. This prediction was in stark contrast with experimental observations and is considered a
major problem that led to the development of quantum mechanics.

According to the Rayleigh-Jeans law,

According to thisrelation E; -« when 1 — 0. But according to the experimental results E; — 0
when A4 — 0. Thisdifference between theoretical results obtained from the Rayleigh-Jeanslaw and
the experimentally obtained graph is termed as ultraviolet catastrophe.

Planck's resolution of the ultraviolet catastrophe marked the birth of quantum theory. It showed
that classical physics could not explain al physical phenomena and that a new framework was
needed to understand the behavior of energy and matter on very small scales. This ultimately led
to the development of quantum mechanics, which has become a fundamental theory in modern
physics.

3.2.7.3 Planck’s radiation law:
Planck’s radiation law was derived by adopting the following steps —
1. An enclosure of finite volume has been considered where every atoms can emit blackbody

radiation and the atomsin the wall of black body radiator behaves like simple harmonic oscillator.
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2. Density of States: The number of possible standing wave modes per unit volume within the
frequency range v and v+dv is given by

nvdv=8mv2dvic®
3. According to Planck's hypothesis, the energy of each mode is quantized and given by E = nhv,
n isanon-negative integer and h is Planck’s constant.
4. Classical Boltzmann distribution law has been followed to calcul ate average energy.

The average energy of amode is—

00 _nhv
(E) = Z nhve kT
B Z
n=0

here Z is the partition function which can be written as —

co
7 = z e—nhv/kT
n=0

hv
(E) = ohv/KT _

Simplifying we get —

Again, we know the number of oscillators per unit volume within the frequency range v and v+dv
isgiven by

nvdv=8mvdvic®
Hence the radiant energy density within the frequency range v and v+dv is given by

8mv?: hv 3 8mwhvd 1

dv =
C3 hv C3 hv

exkT — 1 ekT — 1
8mhvd 1

3 hv
ekT — 1

E,dv = dv

E,dv = dv

This relation is known as the Planck’s radiation law for energy density of black body.

Again using,v = = that is dv = |—,1%d/1| so the above equation can be written in terms of
wavelength as—
8mhc 1
FrdA = —5——d2
eAkT — 1

Here are the two forms of Planck'slaw. The equation accurately describes the experimental curve

across the entire range of wavelengths.
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Fig: Planck’s distribution law

3.2.8. Application of Planck’s law:
From Planck's law, we can derive several important distributions of thermal radiation, including
the Stefan-Boltzmann law, Wien's displacement law, and the Rayleigh-Jeans law.

Stefan-Boltzmann Law from Planck’s law
The Stefan-Boltzmann law states that the total energy radiated per unit surface area of a black

body is proportional to the fourth power of its temperature.
To derive this law from the Planck’s law, the total energy radiated is obtained by integrating
E, dv for waves of all frequencies from 0 to oo -

e 8mh (*© V3
Q =f E,dv = = f v

. hv
Assuming, x = —
kT

dx

B 87Tk4T4J‘°° x3

~ c3h3 eX —1

_ 8mkiT*m*

~ c3h3 15

Thisisthe Stefan-Boltzmann law. Here the value of standard definite integral has been used —

0o x3 7'[4
dx = —
J;) e -1 " 15

aT*

The Stefan constant is given by —

ac 2k*m>
4 15c¢2h3
The value of Stefan constant is5.67x108 W m? K

o =
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Wien’s radiation law from Planck’s law

The Planck’s radiation law is given by —

8mhe 1
Bdd = —g=——

edkT — 1

dA

hc
For short wavelength and low temperature, the term AT isvery small so that the term ezt of the

denominator has considerable high value compared to 1. Thus the distribution reducesto —

hc

8mhc _ hc
E)Ldll = e AkTdA

/15

This is same as the Wien’s radiation law given by —

A _B
Eldl = ﬁe ATdA

Where, A = 8mhc and B = %

Rayleigh- Jeans law from Planck’s law
The Rayleigh-Jeans law can be derived from Planck’s law of black-body radiation by considering
the limit where the wavelength is much longer (or the frequency is much lower) than the
characteristic thermal wavelength (or frequency). The Planck’s law is —

8mhc 1

E;Ldﬂ. = —/15 ﬁ
eAkT — 1

dA

Thus for high value of wavelength and high temperature region the ;;—CT term isvery small and the

hc
term e2«T can be approximated to —

e hc
eAT =1 + m
Thus we have -
8mhc 1
T e

AKT

8mhc AkT

Eldﬂ. = /15 W

8mkT
Eydl = T dA
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This derivation shows that the Rayleigh-Jeans law is an approximation of Planck's law valid for
low frequencies (or long wavelengths).
Wien’s Displacement law from Planck’s law
The Planck’s law iS—
8mhc 1

5 hc
eAkT — 1

EydA = da

For the emissive power to become maximum, the denominator must be minimum in the above
equation. Let us write the denominator as —

Q) = 25T — 1)
af

This function becomes minimum when = 0
df o he _he hc
I AKT — S5eakT (—
— =51 (e 7 1)+,1e T (- )

To satisfy the condition for minimum value —

51* (eAhTCT - 1) + ASeTir (— e ) =0
kT A2

_he hc _he
5/14€7LkT — 5/14 — mlseﬂkT =0

hc hc

— e AkT — =
l=e M =g =0

hc

Here we have assumed, x = i

The above equation cannot be solved directly asit is atranscendental equation. This type of
equations are solved graphically. The point of intersection of the two graphs (1 — e™*) and g

gives the solution which is here x = 4.9651

_ hc
"~ kTA
hc

A, T = — = constant
m kx

X

This is the Wien’s displacement law.
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3.3. Photoelectric effect

The photoelectric effect is a phenomenon where electrons are emitted from a metallic surface due
to absorption of electromagnetic radiation of a suitable frequency. The emitted electrons in this
process are known as photoelectrons. The historical importance of the discovery of this
phenomenon lies on the fact that photoelectric effect directly supports Planck’s quantum
hypothesis and provides evidence in favor of the quantum nature of light.

3.3.1 Experimental study of photoelectric effect

The experimental set up has been shown below —

incldent vadintbon

_L
|

(e
)

I PPy 78

S

Fig: Experimental arrangement to study photoelectric effect

Schematic diagram of the experimental arrangement has been shown in the figure. The main
component is an evacuated tube having a quartz window through which radiation can enter inside
the tube. There are two metallic plates C and A placed inside the tube parallel to each other. Here
the plate C is coated with some alkali metal and when a radiation is incident on the cathode C
electrons get emitted from its surface. The electrode A is kept at acomparatively positive potential
than C. Due to the potential difference the emitted photoelectrons get accelerated towards A and
as a result photoelectric current flows through the circuit which is measured by an ammeter
connected in the external circuit. The potential difference between C and A can be measured using
avoltmeter.

The stopping potential: It has been observed that if the anode A is made negative potential with
respect to C, the photoelectrons are retarded and as a result the photocurrent decreases with the

increase of the potential difference and at a point the photocurrent completely stops.
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The stopping potential refers to the potential difference between C and A at which the most
energetic photoelectrons are just stopped from reaching the anode. At this voltage, the electric
potential energy is equal to the maximum kinetic energy of the photoel ectrons
1
2

eVs = E MVnax

Here ‘e’ refers to the charge of the electron and Vsis the stopping potential.

3.3.2 Laws of photoelectric emission: By closely studying the experimental outcomes following
laws has been derived for photoemission —

1. It has been observed that for a particular material, thereis aminimum value of the frequency of
the incident radiation bel ow which no photoel ectron emission takes place. This minimum value of
the frequency is known as the threshold frequency (vo) of that material. Therefore, if we have a
light of frequency v, then it must satisfy v > vo for photoelectron emission to occur for a particular
material.

2. The number of photoel ectrons emitted per unit time, that is the photoelectric current is directly
proportional to the intensity of the incident electromagnetic radiation. Intensity of light refers to
the number of photons incident upon the metallic surface per unit time. It has also been observed
that the kinetic energy of the emitted photoel ectrons remains unaffected by the intensity of light.
3. The maximum kinetic energy of the emitted photoelectrons is directly proportiona to the
frequency of the incident light and is independent of itsintensity. The kinetic energy (K.E.) of the

photoel ectronsiis given by:

Emvﬁl =hv—¢

where h is Planck’s constant, v is the frequency of the incident light, and ¢ is the work function
of the material which refersto the minimum energy which is required to release an electron from
ametallic surface.

4. The emission of photoelectrons occurs amost instantaneously with the absorption of light (<
108 ). Thereis no observable time lag between the absorption of a photon and the emission of an
electron. This implies a direct and immediate interaction between the incident photon and the
electron.

5. Experimentally it has been observed that the stopping potential is independent of the intensity
of the incident radiation. The stopping potential increases with the frequency of the incident
radiation.
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Fig: Variation of photoelectric current with collector potential at different frequencies and
different intensities of the incident radiation

3.3.3. Key Failuresof Classical Theory
1. Theclassical electromagnetic theory failsto explain the existence of the threshold frequency for
any material. Classical theory predicts that the energy of the photoel ectron is dependent upon the
intensity of the incident radiation. So, given sufficient amount of intensity of the incident radiation
can initiate photoel ectric effect. However, it has been observed that the photoel ectric effect is not
possible below a certain frequency for a particular material irrespective of how the intense is the
incident radiation.
2. The classical theory suggests that an el ectron in the metallic surface will require some time to
accumulate sufficient amount of energy from the incident radiation for photoel ectric emission. But
the experimental study indicates that the photoelectric effect occurs instantaneously. There is no
time lag between the incident of electromagnetic radiation and gjection of photoel ectrons.
3. Classica theory predicts that the kinetic energy of emitted electrons is proportiona to the
intensity of theincident radiation. In reality, the kinetic energy of emitted electrons increases with

the frequency of the incident light and is independent of light intensity.

Emvﬁi =hv—o¢

4. The photoelectric current has been found to be proportional to the light intensity, provided the
frequency is above the threshold value for that material. The classical theory also failsto explain

why photocurrent isintensity dependent.
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3.3.4. Einstein’s Photoelectric equation

Albert Einstein provided a successful explanation of the photoel ectric effect using quantum theory,
which introduces the concept of photons—

1. Electromagnetic radiation is composed of discrete packet or quanta of energy called photon
moving with the speed of light in space. The energy of a photon is given by, E = hv, where & is
Planck's constant and v is the frequency of light. Only photons with sufficient energy (above a
certain frequency threshold) can gject electrons from the material.

2. The energy of an incident photon is such localized that it only can transfer its total energy to an
electron in the metallic surface during collision, no fractional energy transfer is alowed in the
process.

The maximum kinetic energy of aphotoelectron is given by —

Emv,f1 =hv—¢

The minimum energy required to gject an electron is called the work function (¢) of the material.
When thetotal energy of the photon isused in rel easing the photoel ectron from the metallic surface
we can write —
hvg—@ =0
hvy = ¢
Using thisin the previous equation we get —

Emvrzn =hv —hvy = h(v —vg)

This is another form of Einstein’s photoelectric equation. His observations clearly suggests that —
i. The maximum value of the kinetic energy of the photoelectron depends upon the frequency of
the incident radiation.

ii. This equation supports the presence of threshold frequency below which photoelectric effect is
not possible.

iii. Increase of the intensity of light increases the photocurrent, the equation suggests that the
maximum energy of the photoelectron does not depend on intensity.

iv. Electrons absorb energy from individual photons instantaneously.
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3.4. Compton effect

When a photon collides with the afree or loosely bound electron of the scatterer at rest, it transfers
some energy to the electron. Therefore, the scattered photon will have asmaller energy and longer
wavelength compared to the incident photon. The modification of the wavelength of scattered
photon by considering the elastic collisions between the incident photon and the free electron of

the scattered material is known as Compton effect.

= hv
L= scatiered photon
A

Ep = hv

incident photon

Target electron
p=10

&0
“«  scattered electron

Fig: Schematic representation of Compton effect
Let aphoton having energy hv collides with an electron of the scatterer at rest. Due to the collision,
the photon scatters at an angle ¢ and the electron recoils at an angle 0. The scattering process has
been shown schematically in the above diagram. v’ is the frequency of the scattered photon. The
laws of conservation of energy and momentum have been used to measure the modification in

wavelength of the scattered photon.

Applying the law of conservation of momentum:

Along the direction of incidence of photon—
%+0=h7vcosq)+pc059 (1)

Along the perpendicul ar direction of incidence of photon —

OthV,singo—psinH (i)
p represents the momentum of the recoil electron. From the equation (i) and (ii) we have —

pccos6 = hv — hv' cos @ (iii)

pcsin@ = hv'sin g (iv)
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Squaring and adding (iii) and (iv) we get —
(pc)? = ()% = 2(hv)(hv") cos ¢ + (hv')? (v)
Applying the law of conservation of energy we get the energy of the recoil electron —
E¢ = kinetic energy of the recoil electron + its rest mass energy
E® = energy transferred to electron by photon + its rest mass energy
E¢ = (hv — hv') + mqyc? (vi)

Again, for aréativistic recoil electron the energy is given by —

E¢ = \/p%c? + my2c* (vii)

Hence, we get from equation (vi) and (vii)-

Vp2e2 + my2ct = (hv — hv') + myc?
p2c? + my?c* = [(hv — hv") + myc?]?
p%c? + my?ct = (h)? + (hv")? = 2(hv) (') + 2myc?(hv — hv') + my2c?
p%c? = ()2 + (hv")? = 2(hv) (') + 2mgc?(hv — hv') (viii)
Thus, from equation (v) and (viii) we get —
2myc?(hv — hv') = 2(h) (hv') — 2(hv) (hv') cos @
2h(v —v)myc? = 2h?vv' (1 — cos @)

v=v) = h (1 —cos o)
vy’ myc?
1 1 h
vov o myc? (1= cosg)
1 1 h
c/N B c/A - mgyc (1= cosg)

h
N—A=—(-
moc( COS(p)

This is the expression of Compton shift of the scattered photon by the electron. The equation
suggests that the Compton shift is a function of scattering angle and does not depend upon the

wavelength of the incident photon. The Compton shift is aways positive as the maximum calue

of cos ¢ is1.The quantity % is known as Compton wavelength (Ac) of the scattering particle.
0

The Compton wavelength (Ac) is given by —
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The Compton shift is given by —
A —AzL(l—COS(p)
myc
When, ¢ = we get —
y_A:EE
myc
Therefore the Compton shift becomes maximum at ¢ =«
For an electron the Compton wavelength (Ac) isgiven by —
.
myc
Here, mo = 9.1x10°3! kg is the rest mass of an electron.
1 = 6.626 x 10734
©791x1031x3x 108

The Compton effect, or Compton scattering, involves the scattering of X-ray or gamma-ray

= 0.2427 A

photons by electrons. When a photon collides with an electron, it transfers some of its energy to
the electron, causing the electron to be gected and the photon to be scattered with reduced energy.

The phenomenon demonstrates the particle nature of light and supports the concept of photons.

3.5 Wave-Particle Duality: de Broglie hypothesis

Wave-particle duality can be regarded as one of the most fundamental concepts of quantum
mechanics. Wave-particle duality highlights the simultaneous exhibition of both wave and particle
type characteristics of an entity. This principle has been verified through various experiments. As
we have discussed previously blackbody radiation, photoelectric effect with the help of quantum
theory of light which suggests that the light is a stream of photon particles moving with velocity
of light in space. At the same time the concept of photon theory failed to explain the phenomena
of diffraction and interference which requires wave theory of light for complete understanding.
Therefore, we can say that electromagnetic radiations sometime act as wave and sometime like
photon particle. Similarly, one can expect that the particles will show wave like propertiesin some
cases.

de Broglie hypothesis

Louis de Broglie proposed that any moving particle or object has a wave associated with it, with

the wavelength () given by:
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A=h/p
where h is Planck’s constant and p is the momentum of the particle. Electrons and other particles
also exhibit wave-like properties. This has been confirmed by electron diffraction experiments,
where electrons produce interference patterns when passed through a crystal.

From the Planck’s quantum theory, we know E = hv

Again for arelativistic particle we also know E = /p2c? + my2c*
Again, the rest mass (mo) of photon is zero, which suggeststhat E = pc

From the two relation we can write —

hv = pc
hv
A
h
P=7

Here we have used the relation ¢ = vA

3.5.1 Expression of the de-Broglie wavelength of an electron moving inside a potential
difference V:

Let us consider an electron of charge ‘e’ and mass ‘m’ has been subjected to a potential difference

“V’ so that it moves with a velocity ‘v’, then the kinetic energy of the electronis—

1
E= —mp?
5 mv
Here,
1
eV = —mv?

2
’ZeV /ZE
v = —_— = o
m m

If the de Broglie wavelength of this moving electron of momentum “p’ is A then —

h

A==

p

h
A=—
mv

After substituting the value of velocity obtained above we get —
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A=
2eV
m 25X
m
h
A=
2meV
Which by using eV = E, can aso be written as—
h
A=—=
2mE

3.6 Phase and Group Veocity:
3.6.1 Phase velocity
A progressive wave of amplitude ‘a’ propagating with velocity ‘v’ along the positive x direction

can be written as—
y=asinw(t——
asin w
( )

Here, o represents angular frequency and the wave velocity ‘v’ also known as phase velocity (vp).

From the above equation the phase (@) of the wave at any instant of time is —
X
PG5 t) = w(t =)

Differentiating with respect to time we get —

dp ( 1dx)
ac =

vdt
For a point with constant phase, we have —

The velocity with which a wave having constant phase moves forward is called phase velocity
(vp). The velocity with which a definite phase of awave advancesin amedium is called phase
velocity or wave velocity.
X X
y =asinw (t ——) =asin<wt — w—) =asin(wt — kx)
Yp Yp
Here ‘k’ is the propagation constant or phase constant of the wave.

w
k=—

2%
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Thus phase velocity is given by v, =
3.6.2 Group Veocity:
The superposition of multiple number of waves will form a complex wave called a wave packet.
Inside the wave packet the different constituent waves move with different phase velocities but
the envelop comprising the wave group advances through the medium with a constant vel ocity
which is called the group velocity.
Let us consider awave group arises from the combination of two harmonic waves with slightly
differing angular frequency A®w and wave number Ak.
Two interfering waves are given by —
y; = asin(wt — kx)
Yy, = asin[(w + Aw)t — (k + 4k)x]

The resultant displacement at any timeis given by —

y=y1ty2
y = asin(wt — kx) + asin[(w + dw)t — (k + 4k)x]
Aw Ak {20+ Aw 2k + Ak
y=2a cos(—Tt + 79() sm[(T) t— ( > )x]

Since, Aw and Ak are small compared to ® and k, we can neglect Aw and Ak in the sine terms.

Aw Ak
y =2a cos(Tt - 795) sin(wt — kx)

This equation shows that the resultant wave is an amplitude modul ated wave which is travelling

with phase velocity

w
Up—z

Again, from the above equation it is clear that the amplitude of the resultant group of waves
varies with time with circular frequency AT“’ anditisgiven by —

A2 Awt Ak
= acos(2 2x)

The variation of this amplitude produces successive wave group.

Group velocity isthe velocity with which the maximum amplitude of the resultant group of
Wwaves moves.

At x =0andt =0, the maximum amplitude is

Amax = 2a
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The group velocity is given by —

Aw
C lim 2 - i Aw  dw
Vg = AllchOA__k_ A0 Ak dk
2
dw
Yo Tk

3.7 Heisenberg’s uncertainty principle
In case of Classical mechanics, we can simultaneously measure the position and momentum of a
moving particle at any instant with perfect accuracy. However, for quantum mechanics a moving
particle is associated with awave packet and the particle may be found anywhere within the wave
packet. Hence, there will be an uncertainty in the specification of the position of a particle. At the
same time a wave packet also consist of a range of wavelength and according to the de Broglie
relation there will be also an uncertainty in the measurement of momentum of a particle.
Heisenberg a German scientist in 1927, gave uncertainty principle which states that “The
determination of exact position and momentum of a moving particle simultaneously at any instant
of time is impossible’’.
In general, if AXx represents the uncertainty in measurement of position of particle along x-axis,
and Ap represents the uncertainty in the measurement of momentum, then the position —
momentum Heisenberg uncertainty relation gives —

Ax.Ap, > /2
3.8. Wavefunction
The space-time behavior of quantum mechanical particleisgoverned by afunction whichisknown
as wave function. Wave function is generally denoted by y (r, t). Thisis related to the probability
of finding a particle about a position at a particular time.
The probability density of aparticle that isthe probability of founding the particle per unit volume
at agiven space at aparticular time. Itisgivenby - (7, t)* ¥(r,t) = [P (1, t)|?
Therefore, the probability of obtaining a particle inside a volume element dt at some particular
timetisgivenby = |y(r,t)|? dr

Asthe particle must be located somewhere in space, we can write —
L2k 12 dr =1

22 w0 Yt de=1
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Thisistermed as the normalization condition of the wave function.

Characteristics of wave function are—

(i) The wave function must be finite everywhere.

(if) The wave function must be single valued.

(iii) The wave function must be continuous and have a continuous first order derivative.

(iv)The wave function should be a square integrable function.

(v) The magnitude of ¥ (r, t) islarge in the regions where the probability of finding the particleis
high and is small in the regions where the probability of finding it islow.

3.9. Basic postulates of guantum mechanics

Postulate 1: The state of a quantum mechanical system is completely specified by the function
(r, t) that depends on the coordinates of the particle, r and the time t. This function is called the
wavefunction or state function and has the property that (7, t)* Y (r, t)dr isthe probability that
the particle liesin the volume element dt located at r and timet.

This is the probabilistic interpretation of the wavefunction. As a result the wavefunction must
satisfy the condition that finding the particle somewhere in space is 1 and this gives us the

normalization condition

f Y, )" Y(r,t)dr =1

The other conditions on the wavefunction that arise from the probabilistic interpretation are that it
must be single valued, continuous and finite. We normally write wavefunctions with a
normalization constant included.

Postulate 2: To every observable in classical mechanics there corresponds a linear Hermitian
operator in quantum mechanics. This postulate comes from the observation that the expectation
value of an operator that corresponds to an observable must be real and therefore the operator must

be Hermitian. Some examples of Hermitian operators are —

The expression of the position operator (p,) = ?;—x
~ 2 2
The expression of the kinetic energy operator (T) = — ;—m%

Postulate 3: In any measurement of the observable associated with operator A, the only values

that will ever be observed are the eigenvalues, a, that satisfy the eigenvalue equation-
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AY = ay
This is the postulate that the values of dynamical variables are quantized in quantum mechanics
(although it is possible to have a continuum of eigenvalues in the case of unbound state). If the
system is in an eigenstate of 4 with eigenvalue a then any measurement of the quantity 4 will
awaysyield thevalue a.
Postulate 4: If a system isin a state described by the normalised wavefunction, ¥, then the

average value of the observable corresponding to 4 is given by —
+00
<A>= j YA P dr

Postulate 5: The wavefunction or state function of asystem evolvesin time according to the time-

dependent Schrodinger equation —

h? 9%2¥(x,t) 0¥ (x,t)
Tom T ox? +V(x)¥(x,t) =ih T

3.10 Operator in Quantum Mechanics
An operator can be defined as a mathematical rule that changes a given function into a new
function. In guantum mechanics each dynamical variable (position, momentum, energy etc.) is
represented by alinear operator. If A isan operator, it is represented by 4.
Position oper ator
Suppose, the wave function for a free particle moving in the positive x-direction is

W(x, t) = Aeilkx-0t)

[ — ikAei(kx—wt)
ox

Again, de Broglie equation of matter wave gives —

_ h _ h 2m _hk
P=3" 2202~
Therefore, we have,
a_l‘b — l'kAei(kx—a)t)
ox
oY
L =ik
dx hep
h oy
——L —h
i Ox ey

115|Page




Therefore, the expression of the momentum operator (px): p = E;—x

Energy operator.
Suppose, the wave function for afree particle in the positive x-direction is

l/J(X, t) — Aei(kx—wt)
W _

l(l)Ael(kx_wt)
at
oy
o = —iwY
oY
h— =h
i 3 wyP
From Planck’s law we know: E = hw
Therefore we have,
oY
h— =
thop = Ev

Therefore, the expression of the energy operator: E = ih %
Commutation relation: Commutator of two arbitrary operators A and B is defined as —
[4,B] = AB - BA
If [4, B] = 0, then AB = BA, then the operators are called commutative.
If [4, B] # 0, then AB + BA, then the operators are called non-commutative.
The commutation relation between position and momentum operator [X, p,]:
[%, Dx1f (x) = [£Dx — DxX]f (%)
= X2 f(0) = S (ef (1)

i dx
= Xi5f00 - X7 f() = 1f(0)
[2BZ1f () = = 2f(x)
[X,Dx] = ih
The relation suggests that the position and momentum operators do not commute which further

indicates that it isimpossible to measure the position and momentum of a particle simultaneously
with same accuracy.
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3.11 Schrédinger equation
The Schrodinger equation in one dimension is given by —

h? 9%2¥(x,t) 0¥ (x,t)
Tom T ox? +V(x)¥(x,t) =ih T

Here, v (x,t) is the wave function, V (x) is the potential and m is the mass of the particle under

consideration.
We have to solve this equation to obtain the time independent Schrodinger equation.
It has been assumed that V is independent of time. In that case the Schrédinger equation can be
solved by the method of separation of variables by using —
P(xt) = Ppx) o)
The lower case y(x) is a function of only position and ¢ (t) is a function of only time.

For separable solutions we can write —

v do
ot T dt
02y d%y
axz Pax?
Substituting these into the Schrodinger equation we get —
h?  d%y d

_ 49
o @ oz TV P o) = iy —
Dividing both side of the equation by ¢y we get —
h? d? ihd
L O
2my dx? @ dt

Now, the left sideis afunction of t alone, and the right side is afunction of x alone. The only way

this can possibly be true is if both sides are in fact constant—otherwise, by varying t, one could
change the left side without touching the right side, and the two would no longer be equal.

Assuming the separation constant as ‘E’ which is the total energy of the system we have —

ithdg
@dt
do iE
P
On the other hand,
2 2
—ZZ¢%+V(9C) =E
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2 2
AW veow = B

2m dx?

separation of variables has turned a partial differential equation into two ordinary differential
equations. Thefirst of theseis easy to solve (just multiply through by dt and integrate); the general

solutioniis,
iEt

p()~e B
The second is called the time-independent Schrédinger equation; we can solve this equation if the
potential is specified.
Stationary state:
The complete wave function is given by —

P(x,t) = y(x) (t)

The probability density is given by —

PO = 0% = et Yl h = [Pl
It does not depend upon time and the same thing happens in cal cul ating the expectation
value of any dynamical variable. Every expectation value is constant in time. These states are
called stationary states.
Superposition principle
According to this principle, if the Schrodinger equation has multiple number of solutions like 1,
V2, y3....yn then their linear combination will also be a solution of the Schrédinger equation.

Y= 1+ iy + 33t Py, = Z Cnn

n

Here, c,, coefficient containsthe information of probability of occupying state y,,. The probability
of the particle being at state y,, is|c,,|?

3.12 Schradinger equation for a particle moving freely inside a one dimensional infinitely
deep potential well of width ‘L’
The time independent Schrédinger equation is given by:

h? d*yY(x)

o VW) = B ()

Y(x) is the wave function, V(x) is the potential energy and E isthe total energy of the system.
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Vixl =0

=0 r=L

For a particle moving inside an one dimensional potential box the condition is:
V(x)=0at0<x<L

= oo otherwise

Asthe particleismoving freely inside the potential box and it cannot exit outside the box, therefore

the Schrodinger equation for thisregion (V(x) = 0) will be:

h* d*P(x)
“om a2 DY)
d*(x) 2mE
dx2 - = K2 IIJ(X)
Let us assume that, ZZ;E = k? and substituting in the above equation we get:

L 1 k2p(x) = 0 (1)
The solution of this equation iswell known and can be written as:
Y(x) = Asinkx + B cos kx ------ (2
Here, A and B are the constants whose value can be obtained by using the boundary condition:

() Yx)=0atx=0

(i) Yx)=0atx=L
The first boundary condition yields: Asin0 + B cos0 = 0 whichgivesB=0
Thus the equation (2) reducesto: Y (x) = A sin kx ------- 3
Now applying the second boundary condition to equation (3) we get: AsinkL = 0
As ‘A’ cannot be zero, we therefore have, sin kL = 0 which gives

kL =nmn
nm

k=R e(d)
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Therefore the equation (3) can be written as. y,,(x) = Asin ”LLX ----(5)

Again we know that it is certain that the particle is moving inside the box and the normalization
condition is:
L
| wieowndx = 1
0

Using the value of the wave function from the equation (5) we have:

L nmwx
|APf ﬂnLifdx=1
0

Integrating and putting the limiting values we obtain: A = \E

Therefore the eigenfunction of the system is given by: y,,(x) = \E sin

L

2mE nm

Initially we have assumed that === = k? and we have obtained k = —

Equating these two relations we can easily obtain the value of eigen energy of the system:

n?m?h?
nT omiz
Which can also be written as:
n?h?
En= gmiz

The plot of wave function of first few states of aparticlein abox —
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EXERCISE

1 Multiple Choice Type Questions
(i). The wave function ¥,,(x) and ¥, (x) are orthogonal to each other, then the correct

optionis:

@ J7 Ym0 Yn()dx = 1 () 7 $m ()" Pn(x)dx =0
© J7 Ym0 Yn(x)dx = 1/2 (@ J7 Y () Yn()dx = 1
(ii) The expression of the momentum oper ator is given by:

@p =7 (b)p == ©p =2 (p=-—o

2 .
(iii) The eigenvalue of the operator % for the eigenfunction e'* is:

@4 (b) -1 (©5 (d)0.5
(iv) The normalized ground state wave function of a particle inside a one dimensional

potential box of length ‘L’ is given by:

@ue= [fsint By = P @u= [t

nmx

d) ) = \/%sin%
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(v) The ground state energy of a particle moving in a one dimensional potential box isgiven

in terms of length ‘I’ of the box by:

2 2
@ gz Ofz O @o.
hZ
Ans: (b) pw—r

(vi) If the width of a potential well isincreased to twice of itsinitial width then the ground

state energy of the system:
(a) becomes 1/4" of itsinitial value. (b) becomes %2 of itsinitia value.
(c) becomes 1/6" of itsinitial value. (d) remains same.

(vii) In Stefan'slaw, the total energy emitted per unit area per second from perfectly black

body is proportional to-

(@ T? (b) T ©T* (d)T°

(viii) The expression of the Compton wavelength isgiven by -

@1= (b) 2= - ©A= - @21=3

(ix) Therest mass of photon is—

@ao0 (b) its relativistic mass (c) undefined (d) none of these
(x) The absor ptive power of a black body is—

@1 (b) 0 ()2 (d) oo

2. Numerical problems:

(1) An electron of mass 9.11x10-31 kg is moving in one dimensional infinitely deep potential well
of width 1 A. Find (i) the ground state energy, (ii) energy of the 1st excited state and (iii) the
frequency of emitted radiation dueto transition of the electron from the 1st excited to ground state.
(if) Compute the smallest uncertainty in the position of an electron moving with velocity 3x107
m/s. The rest mass of an electron is 9.11x10-31 kg.

(iii) A photon has energy 85 €V. Find its (a) frequency, (b) wavelength, (c) momentum, (d) mass
and (e) number of photons required to produce 1 joule of energy.

(iv) A proton is moving freely with kinetic energy 43.9 eV. Calculate its de Broglie wavelength.
(v) What isthe de Broglie wavelength of athermal electron at 400 K?

(vi) A system has two energy states o and 3¢eo. y1 and 2 are the corresponding normalized wave
functions. At an instant the system isin a superpose state
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Y =Gy + Gy
And giventhat C; = %
Find the value of Cz for which v is normalized. What isthe probability that an energy measurement
would yield a value 3g0? Find out the expectation value of energy.
(vii) The ground state and the excited state normalized wave functions of an atom are y0 and y1
respectively, the corresponding energy being EO and E1. If the probability of finding the atomin
the ground state is 90% and that for the excited state is 10%, then find the average energy of the
atom. Also determine the normalized wave function.
(viii) Evaluate the expectation value of position for a one-dimensional potential box of length L in
the ground state.
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Chapter — 4
4.1. Periodic motion:
The motion which repeats itself at regular interval of time is called periodic motion. In this type
of motion, the position, velocity, and acceleration of the object under motion follow a repetitive
cycle. Some common examples of periodic motion are —
i. Motion of asimple pendulum
ii. The motion of amass attached to a spring.
iii. The motion of an object in acircular path with uniform velocity like a satellite orbiting earth.
iv. Various type of waves like sound and light waves repeat their pattern at regular interva of
space and time.

:::E,i:: ’ [T— ¥ e
.'r-"
f’.lr .'.\\'
f.': "\\ /’ - —— ‘
] kY
‘J’ '\v.‘| f 9 ;

4.2 Oscillatory Motion

Oscillatory motion is a type of periodic motion where an object moves back and forth about an
equilibrium position. Oscillatory motion specifically involves a repetitive to-and-fro motion.
Some examples of oscillatory motion are —

i. A mass attached to a spring,

ii. Motion of the bob of asimple pendulum,

iii. Vibrations of atuning fork.

4.3. Periodic, Har monic and Non-harmonic function:

Periodic Function A periodic function is any function that repeats its values at regular intervals
or periods. Example: sin x. Its period is 27t. The function repeats its value after every 2 unit.
Harmonic Function A harmonic function refers to a function that can be represented as a

sinusoidal wave or a combination of sinusoidal waves. These functions are a subset of periodic
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functions. Example: sinx + cos 2x. This function is a sum of sinusoidal functions, making it
harmonic.

Non-Harmonic Periodic Function A non-harmonic periodic function is a periodic function that
cannot be expressed as a sum of ssimple sine and cosine functions. The square wave is a classic

example of anon-harmonic periodic function.

4.4. Some important parametersrelated to oscillatory motion:
One complete oscillation: One complete oscillation refers to the motion of an object asit travels
through a cycle that starts from a specific point, moves through all its possible positions, and then

returns to the starting point.

A 0 B

A particle starting its motion from point A and then following AOB and BOA path to return at
point A is known as one complete oscillation of the particle.

Time period (T): Time required for one complete oscillation is caled time period. The unit of
time period is the unit of time like second.

Frequency (n): Number of oscillation by a particle per unit time is known as frequency of the
particle and itsunit isHz or s

Relation between frequency (n) and time period (T):

1

n=—

4.5 Simple Har monic Motion:

Thisisatype of periodic motion where the object oscillates back and forth about some equilibrium
position. Thistype of motion alwaysinvolvesarestoring forcewhichisproportional to the distance
of the particle from the equilibrium position and is oppositely directed to the displacement. The
displacement in case of a simple harmonic motion with respect to time can be suitably represented
by asinusoidal graph.
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In the figure a particle is at a distance ‘x’ from the origin O and a restoring force F; is acting on
the particle. This force tries to bring the particle back to its equilibrium position and the force is
directly proportional to the distance from the equilibrium point.
According to the definition of the restoring force —

F. = —ax
‘a’ is the force constant which has the unit N/m or dyne/cm in SI and CGS system, respectively.

4.5.1 Equation of motion: According to the Newton’s law:

v d?x
orce = m—s
dt?
Therefore, we can write —
d?x
mﬁ = —ax
d?x a
— =——X
dt? m
d?x 5
az . 9
dx +w?x =0
—_ w-Xx =
dt?

W= \/% is the angular frequency of the simple harmonic oscillator. This is the differential

equation of a body of mass ‘m’ executing simple harmonic motion. It is a second order differential
equation.
4.5.2 Solution of the differential equation:
The differential equation of SHM is given by —
d’x
e +wx=0

To solve the above equation, we shall follow atrick by multiplying the equation with 2 % —

ded2x+2dx 2 — 0
drdez " “ar® T
By rearranging the above equation, we get —
d dx

d
& 24 2
aa) T g™ =0
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d (dx)z_l_ 2,21 o
dt[ dt W] =
Now integrating this equation, we get —

dx\>
(E) + w?x? = Constant (say M)

Using a boundary condition, the velocity is zero (% = () at the maximum displacement x = A

from the equilibrium position we get M = w242,

dx\>
(_) + w2x2 = w2A2

dt

dx\°

(@) =
d
d_); = Wy A% — x?

By separating the variables and integrating we get —
dx d

v

dx
f\/AZ—x2=w,[dt

sin'E = ot + )
A
x = Asin (wt + @)
This is the expression of displacement of a particle executing simple harmonic motion. Here the
term @ representsthe initial phase or epoch, A isthe amplitude of motion.

The frequency of vibration is given by

_ w
n= 21
Thetime period of mation is given by
21
T =—
w
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displacement

A N

Fig. Graphical representation of displacement vstime of a particle executing SHM

4.5.3 Expression of velocity (v) of a particle executing SHM:

The expression of the displacement of a particle executing simple harmonic motion is—
x = Asin (wt + @)

Therefore, the velocity can be easily obtained by —

_dx
S dt
v = Aw cos (wt + @)

v

Which can be written as —

v = +Awy/1 — sin?(wt + @)
From the expression of displacement, we get —

X
1= sin (wt + @)

Using this value in the expression of velocity we get —

X
=+ Ao |1 - (5)?
v=tdo1- )
v =1 w/A? —x?

The maximum value of velocity: v,,,, = TAw ax=0

The minimum value of velocity: v,,;, = 0 ax=+A

The velocity becomes maximum at the equilibrium position and the velocity is minimum at the

maximum of displacement.
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4.5.4 Expression of acceleration (f) of a particle executing SHM:
We have just obtained the expression of velocity of a particle executing SHM —
v = Aw cos (wt + @)
Therefore, the acceleration is given by —
dv

f=a

f = —Aw?sin(wt + @)

Which can be written in terms of displacement as—
f= —w*x

The maximum value of acceleration: f,,,, = w?A atx = +A
The minimum value of acceleration: f,,,;, = 0 ax=0
4.5.5 Expression of energy (E) of a particle executing SHM:
The particle executing SHM possesses both the kinetic and potential energy.

Kinetic Energy (K): The expression of kinetic energy iswell known and can be written as —

K = ~mv?
—va

The expression of velocity of a particle executing SHM is
v =1 w/A? —x?
1
K = —mw?(4? — x?)

2

The maximum value of kinetic energy: Ko = %ma)ZA2 ax=0

The minimum value of kinetic energy: Ky,in = 0 ax=+A

Potential energy (P): A restoring force is working on a particle executing SHM. Therefore we

have to perform some external work to overcome the restoring force. This work will be stored as

potential energy of the body.
Let the particle is at point P at any instant of time at a distance ‘x’ from the origin O.
We know the restoring forceis given by —
F = —kx
The value of restoring forceat P: F = —kx
The value of restoring forceat O: F = 0
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The average force acting on the body:
1 1

E :O+kx =—kx = —mw?x
av 2 2 2

Thework doneis—
W=F,.x= Ema)zxz

The expression of potential energy is—

1
P= Emwzx2
The maximum value of potential energy: P, = %mszz ax=+A
The minimum value of potential energy: Ppin = 0 ax =
The expression of total energy (E):
1 1
E=K+P= Ema)z(A2 —x2) +§mw2x2 = EmszZ

Therefore, the total energy of a body executing SHM is conserved.

Total energy (E)

+A

Fig: The solid curve indicates kinetic energy and the dotted line represent potential energy
Thetotal energy of abody executing SHM is proportional to the square of the amplitude (A).

4.6. Some examples of SHM
4.6.1 Motion of a bob of ssimple pendulum:
Suppose a simple pendulum having a bob of mass ‘m’ is attached to a string of length ‘L’ and at

any instant makes angle ‘0’ with the vertical. At any arbitrary position following forces are acting

on the bob —
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i. mg — the force due to gravity acting vertically downward.

ii. T — the tension acting on the string towards the point of suspension.

mg sind

g cosd

Fig: Schematic diagram of asimple pendulum
The gravitational force ‘mg’ has two components. One of which is ‘mg cos 0’ that balances the
tension of the string, while the other component which acts in the perpendicular direction of the
string provides the restoring force —
Frestoring = —mg sin 0

3 5 7
We know that, sin6 = 0 — % + % — % +.. and which can be approximated for small value of 6.

Thus, the restoring force can be approximated as: Frestoring = —mgo
According to Newton's second law, the restoring force (F)= mass x acceleration
d?x
mﬁ = —mg0
The arc length x that the bob moves through is related to the angle 6 by:
0=x/L
d?x

gz = T9x/L

The standard equation of SHM is—

Comparing the two equation, we can say the angular frequency —
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w= |7
L

Therefore, the motion of the bob of asimple pendulum is SHM and the time period of motionis

L
T =2m |—
g

4.6.2. Motion of a block attached to an elastic spring:
An elastic spring having length ‘L’ is fixed in a rigid support and hanging vertically. A block of

mass ‘m’ is hanging from the free end due to which the spring gets elongated.

.

Q00000

If the block again is pulled downward and then released it starts a oscillatory motion along the

vertical direction. If ‘k’ is the spring constant of the spring we can write —

F = —kx
According to Newton's second law, the restoring force (F)= mass x acceleration
mdz—x = —kx
dt?
d?x k
dez - " m
d*x k
W +—x =

Comparing with the standard equation of SHM is— % + w?x =0

- |k
Weget—w—\/;

Therefore the motion of the loaded spring is ssmple harmonic in nature and the time period is

T—Z\/m
_T[k

given by —
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4.6.3 Motion of aliquid inside a U-shaped tube —

Consider a U-shaped tube containing aliquid is at rest such that the liquid levels on both sides are
equal. Let L bethe height of the liquid column from the bottom of the U-tube to the liquid surface
when at equilibrium. Let A bethe cross-sectional area of thetube. Let p be the density of theliquid.
Suppose the liquid is displaced by a small amount x from the equilibrium position on one side.
Thiswill cause onesideto rise by x and the other sideto fall by x. Thedifferencein height between

the two sidesis 2x.

x T
5 L

L

|
|

A

Fig: Schematic diagram of a U-shaped tube containing liquid
Hence, the force responsible for the motion of the liquid column is—
F = volume of the liquid of height 2x X density of the liquid X g
F=—-(2xA)XpXg
F = —2xApg
The negative sign indicates that the force is acting in the opposite direction to the rise of the
liquid column and will try to depress the height.
According to Newton's second law, the restoring force (F)= mass x acceleration
Here massis the total mass of the liquid column, whichis m = 2LAp
Where ‘L’ is the height of liquid column in each side initially.
d?x

mﬁ = —ZxApg

2x
2LAp ol —2xapg

d’x g

e T
Comparing with the standard equation of SHM is—

d?x 5

W +wx=0
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We can say that the motion of the liquid column inside the U-shaped tubeis SHM in nature
whose angular frequency is given by -

The time period can be easily written as-

L
T =2m |—
g

Thus, the time period of motion isindependent of the density of liquid under consideration.
4.6.4 Motion of afloating block in aliquid:
Suppose a cubical block of side ‘L’ and density ‘p’ is floating over a liquid of density ‘c’. The

block is further depressed by a length “x’ inside the liquid and then released. We have to show that
the motion is simple harmonic in nature.

The volume of the displaced liquid V = L2x

The mass of the displaced liquid m = L?xo

The buoyant force acting on the block is responsible for the motion of the block.
F, = —L*x0g

According to Newton's second law, the restoring force (F)= mass x acceleration

Mass of the cubical block L3p

d?x "
mﬁ = —L*x0og
d?x
L%P = —L%xog
d*x oy
ity =0
dt? * pL x

Comparing with the standard equation of SHM is—
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d?x

F + a)zx =0
We can say that the motion of the cubical block is SHM in nature whose angular frequency is
given by
_ |29
w = oL

The time period can be easily written as-

’L
T =2m i
og

4.7 Composition of two collinear SHM s having same frequency but different amplitude and

phase:

Let us suppose that the SHMs have frequency ® and amplitudes are ‘a’ and ‘b’. The phase

difference is 8. Therefore the equations of SHMS are —
X, = asin wt
X, = bsin(wt + §)
Therefore the resultant displacement after their superposition —
X =x1+ X%
x = asin wt + b sin(wt + 9§)
X = asinwt + bsinwtcosd + b cos wt sin
Rearranging and taking common —
x = (a+ bcosd)sinwt + (bsind) coswt
Let usassume— (a+ b cosd) = Ccosg and (bsind) = Csingp —
x = Csin(wt + @)

(bsiné)

Where, C = Va? + b2 + 2abcos§ and tan ¢ = (atbc0sd)"

When the SHMs are in phase (6 =0), C = (a + b) and ¢ = 0. Theresultant motion is—

x = (a + b) sin(wt)

Thus, in this case the amplitude of the resultant motion is algebraic sum of the amplitudes of the

constituting SHMSs.

When the SHMs are out of phase (6 =n), C = (a — b) and ¢ = 0. Theresultant motion is—
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x = (a — b) sin(wt)
Thus, in this case the amplitude of the resultant motion is the difference of the amplitudes of the
constituting SHMs.
4.8 Composition of two SHMs having same frequency but different amplitude and phase
moving perpendicular to each other:
Let us suppose that the SHMs have frequency o and amplitudes are ‘a’ and ‘b’. The phase
difference is 8. Therefore the equations of SHMs are —
X = asinwt
y = bsin(wt + 6)
Therefore we have,
X .
E = sin wt
% — sin(wt + 6)
From the second equation —
— = sinwt cosd + cos wtsind

b
Putting the values of sin wt and cos wt —

y x x%
Bz;cosSi 1—;51n6
y x x%
E_EC056=i 1—?51115

x? y? 2xy

_+ﬁ_ECOS6_ sin?é

Thisisagenera equation of elipse which isinclined with the cartesian x-y axis and is within the

Squaring and rearranging —

rectangular shaped box of side 2a and 2b.

i
]

I

1

|

d--r'
:l
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Case I: For 6 =0, sin 6 = 0 and cos 6 = 1 which yields —

x? y? 2xy
a2 b2 ab
X Y _
=3 =0
b
y_ax

This represents a straight line passing through origin and having positive slope.

Case II: For 6 ==, sin © = 0 and cos = -1 which yields —

x* y? o 2xy 0
a2 b2 ab
Xy,
492 =0
(a b)
b
y= ax

This represents a straight line passing through origin and having negative slope.
Case III: For 6 = n/2, sin /2 = 1 and cos ©/2 = 0 which yields —

xZ yZ
ztp=1
This represents a pure ellipse.
Case IV: For d =7/2, sin m/2 = 1 and cos n/2 = 0 and a = b which yields —

x2 + y? = a?

Thisrepresents acircle.

The curves obtained by the superposition of two SHMs moving perpendicular to each other are

called Lissajous figure. The nature of Lissgous figure depends upon the value of frequency,

amplitude and phase difference of the constituent SHMs.
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4.9 Damped Vibration
When avibrating system experiences some resistive forces or frictional force, the system dissipates
its energy with time and its amplitude of motion decreases with time and as a reason the motion
of the body gets stopped. This type of vibration having decreasing amplitude is called damped
vibration.
Example: A car suspension system where the shock absorbers provide damping to reduce
oscillations after a bump.
4.9.1 Differential equation of Damped vibration:
In case of abody executing damped vibration there are two forces acting in the body —
i. Restoring force: The restoring force provided by the spring, which follows Hooke's law:

F. = —ax
The constant a has the unit of N/m.
ii. Damping force: Theresistiveforce provided by the damper, which is proportional to the vel ocity

dx

F, = —bh—
d bdt

The unit of b isgiven by N-s-m™ and it is the damping force per unit velocity.
Therefore, the total force acting on the body:
F = I'—’;- + Fd

According to Newton’s law —

d2x+2kdx+ 2x=0
dt? dc TOrT

Thisisthe differential equation of abody executing damped harmonic motion. We have written

% = 2k asit makesfuture calculation easier. Thisisasecond order differential equation and to

solve this we assume —

x = Ae’t
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dx

— = Ade™
ac ¢
d?x
_ 2
W_ A/’lze t

Putting all these in the equation of damped harmonic motion we get —
A2%e™ + Ade?2k + w?Ae?t =0
AeM[2% + 2kA + w?] =0
Ae?t # 0

24+ 2kA+w?>=0

L T2k Vak? — 4w?
2
A=—k+ k2 - w?

Thus, the general solution of damped vibration is given by —
x = Ae(-k+Vk?-w?)t | po(~k-VkZ-w?)t

In case of damped vibration, depending upon the damping of the system following three cases may
arise—
Casel [k > w]: In this case, the damping is strong, so the system does not oscillate but returns
to equilibrium. In this case the damping coefficient is higher than the natural angular frequency.
In this case the general solution reducesto —
x = Ae~% 4+ Be bt
Here, aand b are real and positive. This type of motions are called overdamped motion. Heavy
door with a hydraulic door closer, motion of a pendulum inside a viscous liquid are examples of
overdamped motion.
Casell [k - w]: Thisisthe case where the damping is just enough to prevent oscillations. The
system returns to equilibrium as quickly as possible without oscillating. Here, as ‘k’ is nearly same
to ‘@’ from the general solution we can write —
x = e *t (4e’t + Be™ 1Y)
Where, y = Vk2 — w? and is very small in nature.
Now neglecting the higher order terms and expanding the exponential series we get —
x = e M[A(1 + yt) + B(1 — yt)]
x =e *[(A+ B) + (A — B)yt]
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x = e *[C + Dt]
An example of critically damped motion is automotive shock absorbers in a car. In a critically

damped system, the damping is just enough to return to equilibrium as quickly as possible without
oscillating.

Il. \ .|'-".
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Case lll [k < w]: In this case, the damping is feeble, so the system oscillates while gradually
losing energy. The amplitude of oscillations decreases exponentialy over time. For this case, the

term Vk? — w? becomesimaginary. So, we can rearrange the term to write —

Vk? — w? = [—(w? = k2) = iy (02 — k2) = i§
Where, /(w2 — k%) = §
X = e-ktA(e(m)t+Be(-m)t
x = e K[Aeidt 4 Be~idt]
x = e *[A(cos 8t + isin 6t) + B(cos 8t — i sin 6t)]
x = e ®[(A+ B) cos 6t + i(A — B) sin 6t]
x = e *[R sin ¢ cos 5t + R cos ¢ sin §t]
x = Re ® sin(8t + ¢)
Herewe have assumed, A + B = Rsing and i(A — B) = Rcos ¢

From the above expression we can see that the amplitude is proportional to e *¢. The damping has
the following effect to the oscillatory motion —

i. The amplitude of motion is no more constant, but decreases exponentially with time.
Amplitude = Re ™kt
ii. The frequency of oscillation of the body decreases due to damping.

5 = J(w? —k?)
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Thus, the frequency becomes —

é (w? — k?) . k?
Frequency = m T om Initial frequency X |[1— o2

The discharge of a charged capacitor through an inductive coil of low inductance is example of
underdamped motion.

Lnilipdajied koo

THplncemenr

4.9.2 Someimportant parameters.

i. Logarithmic decrement: Logarithmic decrement measures the rate at which the amplitude of
the oscillation of adamped harmonic oscillator decreases over time.

A A

displacement
i—
e

I+ 51/4 {uHu - fime

The displacement of adamped oscillator is given by x = Re %t sin(6t + @)
The amplitude (A) of motionis A = Re %t

Initialy, t = 0,4, = R. We can write —
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A=Aye

T 3
t=-,—,—,—..wehave-
4’4’4’ 4
_kT
A1=Aoe 4
_3kT
A2=Aoe 4
_5kT
A3:Aoe 4
_7kT
A4=A0€ 4
Now we have —
A A, Aj KT
—_——=—=.. =2
A, A; A,
kT
d= ez

Thus the ratio of the amplitudes of any two successive peaks of the oscillating system remains
constant. It is called decrement (d). The natural logarithm of decrement is called logarithmic

decrement (A).
A=1Ind = kT
2
ii. Relaxation time (1)
Thetotal energy of a particle executing damped harmonic motion is given by —

E = kinetic energy + potential energy
1 1 1 1
— o102 4 a2 — _am1,2 1 2,2
E—zmv +2kx va +2ma)x

We know the expression of displacement —
x = Re *tsin(6t + @)

§ = (0= k%)

dx
v=—= Re™*t5 cos(8t + @) + Rke *t sin(6t + ¢)
Let usassume, initialy -t =0, v=vyand ¢ =0
vo == R6
R = U0/6

Substituting in the expression of displacement we get —

v
X = FO e~ sin(6t + @)
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_dx vy, Vo
v—dt— 5 e 6cos(6t+<p)+6

For a system with very small damping § ~w and we can neglect the second term.

e Kt (—k) sin(6t + ¢)

v = vy e * cos(wt + @)

v
x = — e ¥ sin(wt + @)
w

Substituting all these in the expression of total energy we get —
1 1

E = —mv? + —mw?x?
2 2

1 1 %
E= Em[vo e *t cos(wt + @)]? + Ema)z[zo e *t sin(wt + ¢)]?

1
E= Emvoze_z"t

E = Ege %

Fimie

The relaxation time is a measure of how quickly a damped harmonic oscillator loses energy or,
equivaently, how quickly its amplitude decreases to a certain fraction of its initial value.
Specifically, the relaxation time t is defined as the time required for the energy of the oscillation

to decrease to 1/e (about 36.8%) of itsinitial value.
Att= 1,E = E
e

Ey
[ Eoe—ZkT
e
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iii. Quality Factor (Q):

Quality factor is a useful parameter to identify the damping of an oscillatory system. A higher Q
factor indicates lower energy dissipation which indicates that the system oscillates for a longer
time before the amplitude decays significantly. It is also defined asthe ratio of the maximum value
of restoring force to the maximum value of damping force. Thus, we can write —

Maximum value of the restoring force

~ Maximum value of the damping force

Q — (Fr)max
(Fd)max
The expression of damping and restoring force are —
dt
F. = —ax

Thus the maximum value of damping forceis—
dx
(F)max = _b(E)max

v
X = FO e~k sin(5t + ¢)

dx kt
v=E=voe cos(0t + @)
Again we know from the previous section —
vy = RS
For a system with very small damping —
d~w

kt kt

Vmax = Vo€ " =Rwe ™ = Aw
(Fa)max = —bAw

(F)max = —aA

The values of constant ‘k’ and ‘@’ are —

Substituting all the values we get
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— (Fr)max
(Fd)max

_ —aAd mw?A o
Q_—MM_ZMMw_%

Q

_a)_
Q—Zk—wr

4.10. For ced vibration
When an externally applied periodic force tries to drive a system in such a way that the system
starts to oscillate with the frequency of the external force rather than its natural frequency of
vibration, then it is called forced vibration.
The external forceis periodic in nature. The system respondsin following two waysto the external
periodic force —
Transient Response: This is the initial response of the system toward the external force and
generaly it decays over time due to damping.
Steady-State Response: This is the long-term response of the system, which occurs at the
frequency of the external driving force.
The externa periodic force may be taken as F, = Fye'!
Therefore, the total force acting on the body:
F=E+F;+E

The differential equation of forced vibration is given by —

d?x dx .

¥l + Zka + w?x = fye'Pt
Where, f, = Fy/m
For steady state response the differential equation may be solved for the particular integral —

Let us assume —

x = Ae'Pt
dx )
i Aipe'®t
2
% = A i%p2elPt = —A p2eivt

Substituting all these in the differential equation of forced vibration we get —
—Ap?etPt + 2kAipe'Pt + w?Ae'Pt = fetPt
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AePt[—p? + 2kip + w?] = fye'Pt

fo
(w? —p?) +i2kp

A=

Where,
(w?—=p?)=Dcosg

2kp = Dsing
D = \/(wz — p2)2 + 4k2p?
tang = ——P
(w? = p?)
Thus ‘A’ can be written as —
| fo fo _Jo i

D cos @ + iDsing - D(cos@ +ising) D
So the particular solution is—
fo e'®t=#)
X =
\/(wz _ p2)2 + 4k2p2

For the transient response we shall solve the homogeneous differential equation —

d2x+2kdx+ x=0

dt? ac Tt T
We aready have solve this equation for damped vibration and know that only for the case k < w

that is for the underdamped case the motion is oscillatory in nature and can be written as —
x = Ce *sin(8t + @)
Where
§ = /(w? —k?)
The general solution is given by —

i(pt—¢)
x = foe + Ce™*tsin(5t + @)
\/(wz _ p2)2 + 4k2p2

Asthe second term contains negative exponent of time, therefore the after sometime thefirst term

will dominate and the solution for the forced vibration can be approximated to —

f, et®@t=%)

\/(wz _ p2)2 + 4k2p2
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4.11. Amplitude resonance:
Amplitude resonance refers to the condition in which a system subjected to an externa periodic
force oscillates with maximum amplitude. At this point, the system absorbs energy most efficiently
from the driving force, leading to large oscillations.
The steady state solution is given by —

fo ei®@t=9)

\/(wz _ p2)2 + 4k2p2

The expression of amplitudeis—
. fo
\/(wz _ p2)2 + 4k2p2

The amplitude becomes maximum when the denominator is minimum. The denominator is a

function of frequency of the external periodic force (p). Therefore the condition of minimum value

of the denominator is—

a _

=0
dp

Here,
f(p) = (w* — p*)* + 4k*p?

df_z 2 2 2
—— = 2(—2p)(w* — p°) + 2p4k

dp
d
af _,
dp
2(—2p)(w?* —p?) + 2p4k? =0
pz = w2 — 2k>2

pr = w? — 2k?

At this value of the frequency of the external periodic force the amplitude becomes maximum.

A = fo
V(@2 = p.2)? + 4k?p,?
A = fO
\/(wz — (Vw?Z =2k%)2)? + 4k2(Nw? — 2k?)?
fo

Amax =

V(w2 — w? + 2k2)2 + 4k2(w? — 2k?2)
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_ fo _ fo _ fo
Vak* + 4k?w? — 8k* VAkZw? — 4k* 2kVw? — k2
A fo _ fo
max — -
2kVw? —2k2 + k%2 2k\[p,? + k2

From the expression it is clear that the damping constant also play a key role in determining the

Amax

sharpness of the resonance curve.
|

Amplisér

Froagica iy i

4.12. Velocity Resonance:
Velocity resonance refers to the condition in which the amplitude of the velocity of an oscillating
system reaches its maximum value due to the applied periodic driving force. This typically occurs
at afrequency which matches with the natural frequency of the system.
The expression of displacement for forced vibration is—
v fosin(pt — ¢)
\/(wz — p2)2 + 4k2p?2

Therefore the velocity is—

, o __ Jopcos(pt — ¢)
dt J(@? = p?)? + 4k2p?

=V cos(pt — @)

Where, ‘V’ is the velocity amplitude which is given by

V= fop
\/(wz _ p2)2 + 4k2p2

Rearranging the term we may write —
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,_ fo ____

j(wz—p2)2+4k2 J( p)2+4k2 \/(%z—p)2+4k2

Velocity amplitude becomes maximum when the frequency of the external periodic force matches

with the natural frequency of vibrationp = +w.

rapindr

Veloriy

Froquencr [ak

4.13. Shar pness of resonance:

The sharpness of resonance measures how narrowly a system responds to its resonant frequency.
A higher Q factor or low value of ‘k’ indicates a sharper or narrower peak in the resonance curve,
meaning the system has low damping and oscillates for alonger period once excited. Conversely,
a lower Q factor or high value of ‘k’ indicates broader resonance with higher damping and quicker
energy dissipation.

The sharpness of aresonance curve is measured by using the concept of Full width at Half Maxima
(FWHM). In agraph, the full width at half maximum (FWHM) is the difference between the two
values of the independent variable at which the dependent variableis equal to half of its maximum
value. In other words, it is the width of a spectrum curve measured between those points on the y-

axis which are half the maximum amplitude.
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4.14. In the steady state forced vibration the rate of dissipation of energy due to resistive
frictional forceisequal to therate of supply of energy by thedriving forcein each cycle
Let in the steady state forced vibration, the displacement of a particle is represented by —

x = Asin(pt — ¢)
The external periodic forceis given by —

F = Fysinpt

Let us suppose that the force moves the particle by amount ‘dx’ in time ‘dt’. Therefore, the work
doneis -

dW = F,sinpt dx
Therefore, the rate of work doneis F sin pt %

The average rate of work done over acomplete cycleis—
1

T dx 1 (T
= ?-fo Fy sinpt (E) dt = ?j; Fy sinpt pAcos(pt — @) dt

_ FopA

T
j [sin pt cos pt cos ¢ + sin’pt sin p]dt
0

1
=3 FopAsin @

Herewehaveused, T = 2?”

Again we have,
x = Asin(pt — ¢)
v = Ap cos(pt — @) =V cos(pt — @)
V= Ap givesthe peak value of the velocity or velocity amplitude

We also have -
2kp
tan(p = —(wz — pz)
Substituting, k = 2 adw= \/Ewe get —
2m m
b
tang = g
p ™
. b
sing =

b+ (=5
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The velocity amplitude can also be written as—

V=Ap = fop _ Fy
V(w? = p?)? + 4k2p? \/bz + (mp — 2)2
p

Putting all these back into the expression of %FOpA sin ¢ we get the average rate of work done

over acomplete cycleis—

1
—bV?
2

Now theresistive frictional forceisgivenby F; = —b%

Therefore, the rate of work done against this force averaged over a complete cycleis—

- 1fdex (dx)dt— 1fTb Y2 ar = Lpazp? = 2 py2

=7) Par\G) =) PGt =304 =5

Therefore, the rate of dissipation of energy due to resistive frictional force is equal to the rate of
supply of energy by the driving force in each cycle

EXERCISE
1. Multiple Choice Type Question:

(i) Thetotal energy of a body executing SHM is proportional to:

(a) the square of amplitude (b) square root of amplitude

(c) cube of amplitude (d) independent of amplitude.

(ii) The relation between natural angular frequency (®) and time period (T) is:
(@ w=2n/TY? (b)w=2n/T () w=2nT (d) w =m?/T
(iii) The general expression for kinetic energy of a body executing SHM is

(@) Ex = %mwzx2 (b) Ex = %mwz(a2 —x%) (0)Ex = %mw‘*x4 (d) Ex = %mw2

(iv) The differential equation of a body of mass ‘m’ with damping constant ‘k’ and natural
angular frequency ‘w’ is given by:

P ok 4 2y = XL oy =
(a)dt2+2kdt+wx—0 (b)dt2+wx—0
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©LZ+ 2k =0 @ X+ meZ 4 2k 4 w2x =0

(v) The condition for light damping or underdampingis:

(k= b k>w k<o (d)yk=0.

(vi) Thecomplimentary function for thedifferential equation for theforced vibration isgiven
by:

(@ x = Ce *sin(w't + 8) (b) x = Csin(wt + §)

(€) x = Ce ® t3sin(w't + &) (d) none of these.

(vii) The resonance curve is sharper for:

(a) system with smaller damping factor k  (b) system with higher damping factor k

(c) system with damping k tends to zero (d) none of these.

(viii) The inductance ‘L’ for electrical circuit is equivalent to which quantity of the acoustic
circuit:

(a) mass (b) velocity (c) displacement (d) momentum

(ix) Which one of the following motion isoscillatory in nature:

(a) overdamped (b) underdamped (c) critically damped (d) none of these.

(x) The quantity half width (A) measures:

(a) the frequency of the external periodic force. (b) nature of the damping force.

(c) the sharpness of resonance (d) none of these.

2.Numerical Questions:

(i) Write down the differential equation of a series LCR circuit driven by a sinusoidal voltage.
Identify the natural frequency of the circuit and relaxation time. Obtain the condition that this
circuit will show an oscillatory decay.

(i) A mass of 10 gm is acted upon by arestoring force 5 dyne/cm and aresistance 2 dynecm™ s.
Find whether the motion is oscillatory or aperiodic. Find the value of the resistance for the motion
to be critically damped.

(i) The amplitude of an oscillator of frequency 200 cycles/sfallsto 1/10" of itsinitial value after
2000 cycles. Calculate the relaxation time, quality factor, damping constant.

(iv) Calculate the damped frequency of oscillation and relaxation of an LCR circuit with L = 3 H,
C=0.05uF and R =100 ohm.
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(v) Consider aparticle undergoing simple harmonic motion. The velocity of the particle at position

X1 is v1 and velocity of the particle at position Xz is V2. Show that the ratio of time period and

T ) x5 — x%
—_— =21 | ——
2,2 2,2

(vi) At an instant of time displacement of a particle is 12 cm and velocity is 5 cm/s, when its

amplitudeis—

displacement is 5 cm, velocity is 12 cm/s. Calculate the amplitude, frequency and time period of
the motion.

(vii) If the damping force acting on a body is of constant magnitude, show that the frequency of
vibration of adamped oscillator is not affected by the magnitude of the damping.

(viii) The equation for displacement of a point of adamped oscillator is given by —

A
x =10 e~ %25t sin (E) t meter

Find the velocity of the oscillating point at t = T/4 and T, where T is the time period.
(ix) Two forced harmonic oscillations have same displacement amplitudes at the frequencies 400
rad/s and 800 rad/s. Cal culate the resonant frequency at which the displacement is maximum.

(x) Show that the displacement vs velocity graph of asimple harmonic oscillator is elliptical.
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